Разделы презентаций


Законы движения планет

В конце XVI в. датский

Слайды и текст этой презентации

Слайд 1Законы движения планет.

Выполнили ученицы 11 класса-

Еремеева Валентина и
Назарова Дарья.
Законы движения планет.        Выполнили ученицы 11 класса-

Слайд 2






В конце XVI в. датский

астроном И. Кеплер, изучая движение планет, открыл три закона их движения. И. Ньютон вывел формулу для закона всемирного тяготения. Он получил три обобщенных закона Кеплера.







В конце XVI

Слайд 3Первый закон Кеплера.




Под действием

силы притяжения одно небесное тело движется в поле тяготения другого небесного тела по одному из конических сечений-кругу, эллипсу, параболе или гиперболе. Ближайшая к Солнцу точка орбиты называется перигелием,самая далекая-афелием. Линия,соединяющая какую-либо точку эллипса с фокусом,называется радиус-вектором. Отношение расстояния между фокусами к большой оси (к наибольшему диаметру) называется эксцентриситетом е.







Первый закон Кеплера.

Слайд 4Второй закон Кеплера.
Каждая планета движется так, что

радиус-вектор планеты за равные промежутки времени описывает равные площади.


Планета движется быстрее всего в перигелии, а медленнее всего-когда находится на наибольшем удалении(в афелии). Таким образом, второй закон Кеплера определяет скорость движения планеты.

Второй закон Кеплера.   Каждая планета движется так, что радиус-вектор планеты за равные промежутки времени описывает

Слайд 5Третий закон Кеплера.
Куб большой полуоси орбиты тела, деленный на квадрат

периода его обращения и на сумму масс тел, есть величина

постоянная.
а^3/[T^2(M1+M2)]=G/4П^2
где, Т-период обращения одного тела вокруг другого тела на среднем расстоянии а.
Третий обобщенный закон Кеплера позволяет определять массы планет по движению их спутников, а масса двойных звезд-по элементам их орбит.

Третий закон Кеплера.Куб большой полуоси орбиты тела, деленный на квадрат периода его обращения и на сумму масс

Слайд 6Пример решения задачи
Определите массу Юпитера по движению его спутника Ио

,если спутник обращается Юпитера по круговой орбите на расстоянии а=422*10^3

км, с периодом Т=1,769 сут.
Решение: Из третьего обобщенного закона Кеплера, полагая Мю=М1>>М2=МИо, имеем Мю=4П^2*a^3/G*T^2,тогда Мю=1,9*10^27 кг.
Пример решения задачиОпределите массу Юпитера по движению его спутника Ио ,если спутник обращается Юпитера по круговой орбите

Слайд 7

Вывод.
Движение планет и других небесных тел вокруг Солнца

под действием силы тяготения происходит по трем законам Кеплера. Эти законы позволяют рассчитывать положения планет и определять их массы по движению спутников вокруг них.
Вывод.Движение планет и других небесных

Слайд 8Вопросы:
1.Перечислите основные элементы эллиптической орбиты планеты.
2.Как связаны периоды обращения планет

с их средними расстояниями до Солнца?
3.Сформулируйте первый обобщенный закон Кеплера.
4.Сформулируйте

второй и третий законы Кеплера.
Вопросы:1.Перечислите основные элементы эллиптической орбиты планеты.2.Как связаны периоды обращения планет с их средними расстояниями до Солнца?3.Сформулируйте первый

Слайд 9
Спасибо за
внимание!!!))))‏

Спасибо за внимание!!!))))‏

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика