Разделы презентаций


Нейросети

ВВЕДЕНИЕТеория нейронных сетей включают широкий круг вопросов из разных областей науки: биофизики, математики, информатики, схемотехники и технологии. Поэтому понятие "нейронные сети" детально определить сложно.Работа сети состоит в преобразовании входных сигналов во

Слайды и текст этой презентации

Слайд 1Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный

университет» «НЕЙРОСЕТИ» ПРЕЗЕНТАЦИЯ
Выполнил: ст.гр. ЭУК-07

Афанасьева Т.С.
Проверил:
Новокрещин Б.Г.

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Слайд 2ВВЕДЕНИЕ
Теория нейронных сетей включают широкий круг вопросов из разных областей

науки: биофизики, математики, информатики, схемотехники и технологии. Поэтому понятие "нейронные

сети" детально определить сложно.
Работа сети состоит в преобразовании входных сигналов во времени, в результате чего меняется внутреннее состояние сети и формируются выходные воздействия. Обычно НС оперирует цифровыми, а не символьными величинами. Большинство моделей НС требуют обучения.
С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов, дискриминантного анализа, методов кластеризации и т. п.

ВВЕДЕНИЕТеория нейронных сетей включают широкий круг вопросов из разных областей науки: биофизики, математики, информатики, схемотехники и технологии.

Слайд 3ЗНАНИЕ

Нейросети - математические модели, а также их программные или аппаратные

реализации, построенные по принципу организации и функционирования биологических нейронных сетей —

сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы.

ЗНАНИЕНейросети - математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования

Слайд 4ПОНИМАНИЕ
Существует множество трактовок понимания НС. Вот некоторые из них:
С математической

точки зрения, обучение нейронных сетей — это многопараметрическая задача нелинейной оптимизации.


С точки зрения кибернетики, нейронная сеть используется в задачах адаптивного управления и как алгоритмы для робототехники.
С точки зрения развития вычислительной техники и программирования, нейронная сеть — способ решения проблемы эффективного параллелизма.
А с точки зрения искусственного интеллекта, НС является основой философского течения коннективизма и основным направлением в структурном подходе по изучению возможности построения естественного интеллекта с помощью компьютерных алгоритмов.

ПОНИМАНИЕСуществует множество трактовок понимания НС. Вот некоторые из них:С математической точки зрения, обучение нейронных сетей — это многопараметрическая

Слайд 5ПРИМЕНЕНИЕ
В каждой предметной области при ближайшем рассмотрении можно найти постановки

нейросетевых задач.
Экономика и бизнес: предсказание рынков, оценка риска невозврата

кредитов, предсказание банкротств, оценка стоимости недвижимости.
Медицина: обработка медицинских изображений, мониторинг состояния пациентов, диагностика, факторный анализ эффективности лечения, очистка показаний приборов от шумов.
Связь: сжатие видео-информации, быстрое кодирование-декодирование, оптимизация сотовых сетей и схем маршрутизации пакетов.
Интернет: ассоциативный поиск информации, электронные секретари и агенты пользователя в сети.
Безопасность и охранные системы: системы идентификации личности, распознавание голоса, лиц в толпе.
Нейросети - это не что иное, как новый инструмент анализа данных. И лучше других им может воспользоваться именно специалист в своей предметной области.
ПРИМЕНЕНИЕВ каждой предметной области при ближайшем рассмотрении можно найти постановки нейросетевых задач. Экономика и бизнес: предсказание рынков,

Слайд 6АНАЛИЗ
Тип используемой нейросети во много диктуется поставленной задачей.
Так, для

задачи классификации удобными могут оказаться многослойный персептрон и сеть Липпмана-Хемминга.

Персептрон также применим и для задач идентификации систем и прогноза. При решении задач категоризации потребуются карта Кохонена, архитектура встречного распространения или сеть с адаптивным резонансом. Задачи нейроматематики обычно решаются с использованием различных модификаций модели Хопфилда.
Лучше использовать те архитектуры, свойства которых вам наиболее знакомы, так как это упростит интерпретацию результатов. На выбор может повлиять наличие или отсутствие в вашем распоряжении соответствующих программ.

АНАЛИЗТип используемой нейросети во много диктуется поставленной задачей. Так, для задачи классификации удобными могут оказаться многослойный персептрон

Слайд 7СИНТЕЗ

Современные НС обладают рядом ценных свойств:
Обучаемость – можно обучить

сеть решению задач, которые ей по силам;
Способность к обобщению

– после обучения сеть становится нечувствительной к малым изменениям входных сигналов;
Способность к абстрагированию – сеть сама может создать на выходе идеальный образ, с которым никогда не встречалась.
СИНТЕЗСовременные НС обладают рядом ценных свойств: Обучаемость – можно обучить сеть решению задач, которые ей по силам;

Слайд 8ОЦЕНКА

Нейронные сети не программируются в привычном смысле этого слова, они

обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед

традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение.
Способность нейросетей к выявлению взаимосвязей между различными параметрами дает возможность выразить данные большой размерности более компактно, если данные тесно взаимосвязаны друг с другом. Обратный процесс — восстановление исходного набора данных из части информации — называется (авто)ассоциативной памятью.
ОЦЕНКАНейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ

Слайд 9ЗАКЛЮЧЕНИЕ
Синтез различных методов и идей в едином нейросетевом подходе является

неоценимым достоинством нейрокомпьютинга. Нейрокомпьютинг предоставляет единую методологию решения очень широкого

круга практически интересных задач. Это, как правило, ускоряет и удешевляет разработку приложений.
Очень полезно представить ожидаемый результат работы нейросети и способ его дальнейшего использования. Во многих случаях это приводит к упрощению постановки, и, как следствие, к более эффективному решению. Если же полученные результаты не будут соответствовать вашим ожиданиям, то это - важная причина более фундаментально подойти к задаче.

ЗАКЛЮЧЕНИЕСинтез различных методов и идей в едином нейросетевом подходе является неоценимым достоинством нейрокомпьютинга. Нейрокомпьютинг предоставляет единую методологию

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика