Солнечная система
Характеристики планет
Характеристики планет
Характеристики планет
Ускорение, которое испытывает тело m, находящееся на расстоянии r от тела M, равно
Вблизи поверхности Земли ускорение свободного падения равно g = 9,8 м/с2. Сплюснутость Земли и ее вращение приводят к отличию силы тяжести на экваторе и возле полюсов: ускорение свободного падения в точке наблюдения может приближенно высчитываться по формуле g = 9,78 ∙ (1 + 0,0053 sin φ), где φ – широта этой точки.
Пройдя середину тоннеля на максимальной скорости, оно начинает замедляться. Достигнув противоположной точки туннеля, тело останавливается и начинает падать обратно, совершая таким образом колебательные движения. График зависимости ускорения тела от времени приведен справа вверху.
Движение тела можно приостановить или прекратить при помощи кнопок Стоп и Сброс.
Второй закон Кеплера показывает равенство площадей, заметаемых радиус–вектором небесного тела за равные промежутки времени. При этом скорость тела меняется в зависимости от расстояния до Земли (особенно хорошо это заметно, если тело движется по сильно вытянутой эллиптической орбите).
Демонстрация третьего закона Кеплера осуществляется при помощи двух спутников. В этом режиме можно задать параметры орбиты каждого спутника. Сравнив периоды обращения и радиусы орбит спутников, можно убедиться в справедливости закона.
Кнопки Стоп и Сброс приостанавливают модель и возвращают ее в исходное состояние. Если выбрать теперь при помощи соответствующего переключателя перелет с Марса на Землю, все произойдет в обратном порядке: находясь на орбите Марса, аппарат получит импульс торможения и перейдет на промежуточную эллиптическую орбиту; второй импульс торможения в перигелии промежуточной орбиты переведет его на орбиту Земли.
Помимо разворота космического корабля, маневр может использоваться для увеличения его собственной скорости. Этот эффект сходен с эффектом увеличения скорости шарика после удара с массивной упругой стенкой, движущейся ему навстречу. Если скорость шарика до удара была v, а стенки –u, то после удара шарик приобретает скорость 2u + v (это становится ясным, если перейти в систему отсчета, связанную со стенкой). Спутник же увеличивает свою скорость, когда разворачивается вокруг планеты, двигающейся ему навстречу.
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть