Разделы презентаций


Генная инженерия

Историческая справкаВ 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК, на рубеже 50 – 60-х годов 20 века были выяснены свойства генетического кода. В 1970 году Г.Смитом был

Слайды и текст этой презентации

Слайд 1Генная инженерия

Генная инженерия

Слайд 2Историческая справка
В 1953 году Дж. Уотсон и Ф. Крик создали

двуспиральную модель ДНК, на рубеже 50 – 60-х годов 20

века были выяснены свойства генетического кода. В 1970 году Г.Смитом был впервые выделен ряд ферментов – рестриктаз, пригодных для генно-инженерных целей. Комбинирование ДНК-рестриктаз (для разрезания молекул ДНК на определенные фрагменты) и выделенных еще в 1967 г. ферментов – ДНК-лигаз (для «сшивания» фрагментов в произвольной последовательности) по праву можно считать центральным звеном в технологии генной инженерии.
В 1972 году П. Берг, С. Коэн, Х. Бойер создали первую рекомбинантную ДНК.
С начала 1980-х гг. достижения генной инженерии начинают использоваться на практике.
С 1996 г. генетически модифицированные начинают использоваться в сельском хозяйстве.

Уотсон и Крик

Историческая справкаВ 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК, на рубеже 50 –

Слайд 3 Задачи генной инженерии
Придание устойчивости к ядохимикатам
Придание устойчивости к вредителям и

болезням
Повышение продуктивности
Придание особых качеств

Задачи генной инженерииПридание устойчивости к ядохимикатамПридание устойчивости к вредителям и болезнямПовышение продуктивностиПридание особых качеств

Слайд 4Технология
1. Получение изолированного гена. 2. Введение гена в вектор для встраивания

в организм. 3. Перенос вектора с конструкцией в модифицируемый организм-рецепиент. 4. Молекулярное

клонирование. 5. Отбор ГМО
Технология1. Получение изолированного гена. 2. Введение гена в вектор для встраивания в организм. 3. Перенос вектора с

Слайд 5Суть технологии заключается в направленном, по заданной программе конструировании молекулярных

генетических систем вне организма с последующим внедрением созданных конструкций в

живой организм. В результате достигается их включение и активность в данном организме и у его потомства.

Возможности генной инженерии – генетическая трансформация, перенос чужеродных генов и других материальных носителей наследственности в клетки растений, животных и микроорганизмов, получение генно-инженерно-модифицированных организмов с новыми уникальными генетическими, биохимическими и физиологическими свойствами и признаками, делают это направление стратегическим.

Трансгенная мышь

Суть технологии заключается в направленном, по заданной программе конструировании молекулярных генетических систем вне организма с последующим внедрением

Слайд 6Практические достижения современной генной инженерии
Созданы клонотеки, представляющие собой коллекции

клонов бактерий. Каждый из этих клонов содержит фрагменты ДНК определенного

организма (дрозофилы, человека и других).
На основе трансформированных штаммов вирусов, бактерий и дрожжей осуществляется промышленное производство инсулина, интерферона, гормональных препаратов. На стадии испытаний находится производство белков, позволяющих сохранить свертываемость крови при гемофилии, и других лекарственных препаратов.
Созданы трансгенные высшие организмы, в клетках которых успешно функционируют гены совершенно других организмов. Широко известны генетически защищенные генно-модифицированные растения, устойчивые к высоким дозам определенных гербицидов, к вредителям. Среди трансгенных растений лидирующие позиции занимают: соя, кукуруза, хлопок, рапс.

Овечка Долли

Практические достижения современной генной инженерии Созданы клонотеки, представляющие собой коллекции клонов бактерий. Каждый из этих клонов содержит

Слайд 7Эколого-генетические риски ГМ-технологий
Генная инженерия относится к технологиям высокого уровня. Высокие

биотехнологии характеризуются высокой наукоемкостью. ГМ-технологии используются как в рамках обычного

сельскохозяйственного производства, так и в других областях человеческой деятельности: в здравоохранении, в промышленности, в различных областях науки, при планировании и проведении природоохранных мероприятий.
Любые технологии высокого уровня могут быть опасными для человека и окружающей его среды, поскольку последствия их применения непредсказуемы. Для снижения вероятности неблагоприятных эколого-генетических последствий применения генно-инженерных технологий постоянно разрабатываются новые подходы. Например, трансгенез (внедрение в геном генетически модифицируемого организма чужеродных генов) в ближайшем будущем может быть вытеснен цисгенезом (внедрение в геном генетически модифицируемого организма генов этого же или близкородственного вида).

Эколого-генетические риски ГМ-технологийГенная инженерия относится к технологиям высокого уровня. Высокие биотехнологии характеризуются высокой наукоемкостью. ГМ-технологии используются как

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика