Слайд 1Строение эукариотических
клеток
Слайд 2Открытие клетки обязано микроскопу
В 1590 голландский оптик Захарий Янсен изобрел
микроскоп. с двумя линзами.
С 1609-1610 оптики-ремесленники во многих странах Европы
изготавливают подобные микроскопы.
Галилей использует в качестве микроскопа сконструированную им зрительную трубу.
Роберт Гук (Хук) (1635-1703). Усовершенствовал микроскоп и установил клеточное строение тканей, ввел термин «клетка».
Необычайного мастерства в шлифовании линз достиг Антони ван Левенгук который сделал микроскоп из единственной линзы. Левенгук впервые, в 1683 наблюдал микроорганизмы.
Слайд 3Развитие представлений о клеточном строении растений:
1 — клетки-пустоты в непрерывном
растительном веществе (Р. Гук, 1665):
2 — стенки клеток построены
из переплетённых волокон (Н. Грю, 1682);
3 — клетки-камеры, имеющие общую стенку (начало 19 в.);
4 — каждая клетка имеет собственную оболочку (Г. Линк, И. Мольденхавер, 1812);
5 — образователь клетки — ядро («цитобласт»), исчезающее в процессе клеткообразования (М. Шлейден, 1838):
6 — клетки, состоящие из протоплазмы и ядра (Х. Моль, 1844).
Слайд 6 Клеточная мембрана
функции:
разделение
содержимого клетки и внешней среды;
регуляция обмена веществ между клеткой и средой;
место протекания некоторых биохимических реакций (в том числе фотосинтеза);
объединение клеток в ткани.
Важнейшее свойство плазматической мембраны – полупроницаемость. Через неё медленно диффундируют глюкоза, аминокислоты, жирные кислоты и ионы.
Слайд 7Мембраны – это липопротеиновые структуры. Липиды образуют бислой, а мембранные
белки «плавают» в нём.
В
мембранах присутствуют несколько тысяч различных белков: структурные, переносчики, ферменты и т.д. Предполагают, что между белковыми молекулами имеются поры, сквозь которые могут проходить гидрофильные вещества. К некоторым молекулам на поверхности мембраны подсоединены гликозильные группы, которые участвуют в процессе распознавания клеток при образовании тканей.
Слайд 8Транспорт веществ через плазматические мембраны
диффузия (газы, жирорастворимые молекулы проникают прямо
через плазматическую мембрану); при облегчённой диффузии растворимое в воде вещество
проходит через мембрану по особому каналу, создаваемому какой-либо специфической молекулой;
осмос (диффузия воды через полунепроницаемые мембраны);
активный транспорт (перенос молекул из области с меньшей концентрацией в область с большей, например, посредством специальных транспортных белков, требует затраты энергии АТФ);
при эндоцитозе мембрана образует впячивания, которые затем трансформируются в пузырьки или вакуоли. Различают фагоцитоз – поглощение твёрдых частиц (например, лейкоцитами крови) – и пиноцитоз – поглощение жидкостей;
экзоцитоз – процесс, обратный эндоцитозу; из клеток выводятся непереварившиеся остатки твёрдых частиц и жидкий секрет.
Слайд 9Транспорт веществ через плазматические мембраны
Эндоцитоз
Хищная инфузория дидиниум поедает инфузорию-туфельку
Экзоцитоз
Слайд 10Цитоплазма
Представляет собой водянистое вещество – гиалоплазма (90 % воды), в котором
располагаются различные органоиды, а также включения (глыбки гликогена, капли жира,
кристаллы крахмала.
В гиалоплазме протекает гликолиз, синтез жирных кислот, нуклеотидов и других веществ.
Является динамической структурой. Органеллы движутся, а иногда заметен и циклоз – активное движение, в которое вовлекается вся протоплазма.
Слайд 11Эндоплазматическая сеть
сеть мембран, пронизывающих цитоплазму.
связывает органоиды между собой, по ней
происходит транспорт питательных веществ.
Гладкая ЭПС имеет вид трубочек, стенки
которых из мембраны. В ней осуществляется синтез липидов и углеводов.
На мембранах каналов и полостей гранулярной ЭПС расположено множество рибосом; данный тип сети участвует в синтезе белка.
Слайд 12Митохондрии
Важнейшей функцией является синтез АТФ, происходящий за счёт окисления органических
веществ, их иногда называют «клеточными электростанциями».
длина в пределах 1,5–10 мкм,
а ширина – 0,25–1 мкм.
Митохондрии могут изменять свою форму и перемещаться в те области клетки, где потребность в них наиболее высока. В клетке содержится до тысячи митохондрий, причём это количество сильно зависит от активности клетки.
Каждая митохондрия окружена двумя мембранами, внутренняя сложена в складки, называемые кристами.
внутреннее содержимое – матрикс
содержатся РНК, белки и митохондриальная ДНК, участвующая в синтезе митохондрий наряду с ядерной ДНК.
Слайд 13Аппарат Гольджи
представляет собой стопку мембранных мешочков (цистерн) и связанную с
ними систему пузырьков.
На наружной, вогнутой стороне стопки из отпочковывающихся
пузырьков постоянно образуются новые цистерны, на внутренней стороне цистерны превращаются обратно в пузырьки.
Функции:
транспорт веществ в цитоплазму и внеклеточную среду;
синтез жиров и углеводов, в частности, гликопротеина муцина, образующего слизь, а также воска, камеди и растительного клея;
участвует в росте и обновлении плазматической мембраны и в формировании лизосом.
Слайд 14Лизосомы
представляют собой мембранные мешочки, наполненные пищеварительными ферментами.
Особенно много лизосом
в животных клетках, здесь их размер составляет десятые доли микрометра.
Функции:
расщепляют питательные вещества, переваривают попавшие в клетку бактерии, выделяют ферменты, удаляют путём переваривания ненужные части клеток, являются «средствами самоубийства» клетки: в некоторых случаях (например, при отмирании хвоста у головастика) содержимое лизосом выбрасывается в клетку, и она погибает.
Слайд 15Рибосомы
мелкие (15–20 нм в диаметре) органоиды, состоящие из р-РНК и полипептидов.
Важнейшая
функция – синтез белка.
Их количество в клетке весьма велико:
тысячи и десятки тысяч.
Рибосомы могут быть связаны с эндоплазматической сетью или находиться в свободном состоянии. В процессе синтеза обычно одновременно участвуют множество рибосом, объединённых в цепи, называемые полирибосомами (полисомами).
Слайд 16Микротрубочками Полые цилиндрические диаметром около 25 нм, длина может достигать нескольких
микрометров. Стенки микротрубочек сложены из белка тубулина.
Центриоли Встречаются в
клетках животных и низших растений – мелкие полые цилиндры длиной в десятые доли микрометра, построенные из 27 микротрубочек. Во время деления клетки они образуют веретено деления.
Базальные тельца по структурам идентичны центриолям, содержащиеся в жгутиках и ресничках. Эти органеллы вызывают биение жгутиков.
Другая функция микротрубочек – транспорт питательных веществ. Микротрубочки представляют собой достаточно жёсткие структуры и поддерживают форму клетки, образуя своеобразный цитоскелет.
С опорой и движением связана и ещё одна форма органелл – микрофиламенты – тонкие белковые нити диаметром 5–7 нм.
Слайд 17В растительных клетках присутствуют все органеллы, обнаруженные в животных клетках
(за исключением центриолей).
Клеточные стенки растений состоят из целлюлозы, образующей
микрофибриллы. В клетках древовидных растений слои целлюлозы пропитываются лигнином, придающим им дополнительную жёсткость.
Служат растениям опорой, предохраняют клетки от разрыва, определяют форму клетки, играют важную роль в транспорте воды и питательных веществ от клетки к клетке. Соседние клетки связаны друг с другом плазмодесмами, проходящими через мелкие поры клеточных стенок.
Вакуоль – наполненный жидкостью мембранный мешочек.
В животных клетках могут наблюдаться небольшие вакуоли, выполняющие фагоцитарную, пищеварительную, сократительную и другие функции.
Растительные клетки имеют одну большую центральную вакуоль с клеточным соком. Это концентрированный раствор сахаров, минеральных солей, органических кислот, пигментов и других веществ.
Накапливают воду, могут содержать красящие пигменты, защитные вещества (например, таннины), гидролитические ферменты, вызывающие автолиз клетки, отходы жизнедеятельности, запасные питательные вещества.
Слайд 18Пластиды
Только в растительных клетках.
Хлоропласты, осуществляют фотосинтез.
Хромопласты, окрашивают отдельные части
растений в красные, оранжевые и жёлтые тона.
Лейкопласты, приспособлены для хранения
питательных веществ: белков (протеинопласты), жиров (липидопласты) и крахмала (амилопласты).
Содержат небольшое количество собственной ДНК. Подобная внехромосомная наследственность не подчиняется менделевским законам. ДНК органелл отвечает лишь за малую часть наследственной информации. По-видимому, пластиды произошли от симбиотических прокариот, поселившихся в клетках организма-хозяина миллиарды лет назад.
Слайд 19Ядро
По размерам (10–20 мкм) являясь самой крупной из органелл.
Важнейшей функцией
ядра является сохранение генетической информации.
Покрыто ядерной оболочкой, которая состоит из
двух мембран: наружной и внутренней, имеющих такое же строение, как и плазматическая мембрана. Между ними находится узкое пространство, заполненное полужидким веществом. Через множество пор в ядерной оболочке осуществляется обмен веществ между ядром и цитоплазмой (в частности, выход
и-РНК в цитоплазму). Внешняя мембрана часто бывает усеяна рибосомами.
В кариоплазму (ядерный сок) поступают вещества из цитоплазмы. Содержит хроматин – вещество, несущее ДНК, и ядрышки - округлые структуры внутри ядра, в которой происходит формирование рибосом.
Совокупность хромосом, содержащихся в хроматине, называют хромосомным набором.