Разделы презентаций


Ядерные модели

Содержание

Модели атомных ядер   Первой моделью ядра была капельная модель, развитая в работах Н. Бора, Дж. Уиллера иЯ. Френкеля. В этой модели атомное ядро рассматривается как сферическая капля заряженной жидкости.

Слайды и текст этой презентации

Слайд 1Выполнили: Наркаева Д. Островская Ю.
Ядерные модели
Презентации по ядерной физике
http://prezentacija.biz/prezentacii-po-fizike/

Выполнили: Наркаева Д. Островская Ю.Ядерные моделиПрезентации по ядерной физикеhttp://prezentacija.biz/prezentacii-po-fizike/

Слайд 2Модели атомных ядер
  Первой моделью ядра была капельная

модель, развитая в работах Н. Бора, Дж. Уиллера иЯ. Френкеля. В этой модели атомное ядро рассматривается

как сферическая капля заряженной жидкости.
Модели атомных ядер     Первой моделью ядра была капельная модель, развитая в работах Н. Бора, Дж. Уиллера иЯ. Френкеля. В этой

Слайд 3Основанием для такой аналогии послужило то, что плотность ядерного вещества

у всех ядер вблизи линии стабильности приблизительно одинакова, что говорит

о его несжимаемости. Кроме того, с жидкостью ядерное вещество сближает и свойство насыщения ядерных сил (энергия связи ядер приблизительно пропорциональна массовому числу). 
Основанием для такой аналогии послужило то, что плотность ядерного вещества у всех ядер вблизи линии стабильности приблизительно

Слайд 4 В рамках капельной модели удалось объяснить многие свойства атомного ядра

и получить полуэмпирическую формулу для энергии связи атомных ядер (формула Вайцзеккера),

которая позволила понять некоторые закономерности в α- и β-распадах, делении ядер и грубо оценивать массы и энергии связи новых ядер
Eсв = a1A - a2A2/3 - a3Z2/A1/3 - a4(A/2 - Z)2/A + a5A-3/4,
где a1 = 15,75 МэВ; a2 = 17,8 МэВ; a3 = 0,71 МэВ; a4 = 94,8 МэВ;

 В рамках капельной модели удалось объяснить многие свойства атомного ядра и получить полуэмпирическую формулу для энергии связи

Слайд 5Экспериментальные исследования выявили некоторую периодичность в изменении индивидуальных характеристик основных

и возбужденных состояний ядер (таких, как энергии связи, спины, магнитные

моменты, четности, некоторые особенности α - и β- распада, размещение ядер-изомеров среди остальных ядер и др.)  Эту периодичность капельная модель описать была не способна (см. рис.1). 
Экспериментальные исследования выявили некоторую периодичность в изменении индивидуальных характеристик основных и возбужденных состояний ядер (таких, как энергии

Слайд 6Рис.1. Разность масс между экспериментальными значениями и предсказаниями формулы Вайцзеккера

для ядер с различным числом нейтронов

Рис.1. Разность масс между экспериментальными значениями и предсказаниями формулы Вайцзеккера для ядер с различным числом нейтронов

Слайд 7Отмеченная периодичность подобна периодичности свойств электронных оболочек атома и определяется

магическими числами нейтронов и протонов:
n 2, 8, 20,

28, 50, 82, 126, 184
р 2, 8, 20, 28, 50, 82, 114
Отмеченная периодичность подобна периодичности свойств электронных оболочек атома и определяется магическими числами нейтронов и протонов:  n

Слайд 8 Магические числа нейтронов и протонов по аналогии с

атомами соответствуют полностью заполненным оболочкам. Различие в магических числах -

126 (для нейтронов) и 114 (для протонов) - обусловлено кулоновским взаимодействием.
Магические числа нейтронов и протонов по аналогии с атомами соответствуют полностью заполненным оболочкам. Различие в

Слайд 9Впервые на особую устойчивость ядер с магическим числом нейтронов или

протонов обратили внимание Бартлет (1932 г.) и Эльзассер (1933 г.). Эльзассер попытался

понять стабильность магических ядер, предполагая, что нуклоны, подобно электронам в атоме, движутся независимо друг от друга в одночастичной потенциальной яме. Однако он смог объяснить только три первых магических числа: 2, 8 и 20. Работа Эльзассера осталась незамеченной, так как в то время еще не было накоплено достаточно экспериментальных данных и, кроме того, его предположение казалось совершенно невероятным, поскольку в ядре, в отличие от атома, нет выделенного силового центра, а короткодействующий характер ядерных сил, казалось бы, исключал введение результирующего среднего потенциала.
Впервые на особую устойчивость ядер с магическим числом нейтронов или протонов обратили внимание Бартлет (1932 г.) и Эльзассер (1933

Слайд 10С течением времени, однако, накапливались все новые и новые экспериментальные

доказательства существования оболочечной структуры ядер. Однако все предложенные варианты потенциальной

ямы не давали правильных значений магических чисел.. Наконец, в 1949 г.М. Гепперт-Майер и Дж. Иенсенсделали решающий шаг в становлении оболочечной модели. Они поняли, что для объяснения заполнения ядерных оболочек при N, Z = 50, 82 и N = 126, необходимо учесть так называемое спин-орбитальное взаимодействие: взаимодействие спина нуклона с его орбитальным моментом количества движения.
С течением времени, однако, накапливались все новые и новые экспериментальные доказательства существования оболочечной структуры ядер. Однако все

Слайд 11Благодаря этому им удалось воспроизвести наблюдаемые в эксперименте магические числа

нуклонов. Далее они указали на важность учета принципа Паули при

рассмотрении движения нуклона в ядре: принцип Паули препятствует потере энергии нуклоном при столкновении, так как все низколежащие одночастичные состояния заняты, поэтому средняя длина свободного пробега нуклона оказывается больше размеров ядра, что позволяет говорить об индивидуальных орбитах нуклонов. В модели оболочек предполагается, что нуклоны движутся независимо друг от друга в сферически-симметричной потенциальной яме.
Благодаря этому им удалось воспроизвести наблюдаемые в эксперименте магические числа нуклонов. Далее они указали на важность учета

Слайд 12Собственные состояния нуклона в такой яме находят, решая соответствующее уравнение

Шредингера. Эти состояния характеризуются квантовыми числами, которые определяют физические величины,

сохраняющиеся при движении в  сферически-симметричном поле (рис.2).

Собственные состояния нуклона в такой яме находят, решая соответствующее уравнение Шредингера. Эти состояния характеризуются квантовыми числами, которые

Слайд 13
Рис. 2. Одночастичные уровни в оболочечном потенциале. Приведено

схематическое изображение уровней в потенциале Вудса-Саксона: слева без учета спин-орбитального

взаимодействия, справа - с учетом. Фигурные скобки объединяют уровни, входящие в одну осцилляторную оболочку. Черным цветом дано число вакантных мест для нуклонов одного сорта, в синим приведено полное число частиц, красным указаны магические числа


Рис. 2. Одночастичные уровни в оболочечном потенциале. Приведено схематическое изображение уровней в потенциале Вудса-Саксона:

Слайд 14В оболочечной модели спин ядра складывается из суммы спинов и

орбитальных моментов отдельных нуклонов. Принцип Паули и специфика ядерного взаимодействия приводят к

тому, что все четно-четные ядра имеют спин равный 0. Четность состояния определяется произведением внутренних четностей составляющих его частиц на четности волновых функций, описывающих их движение относительно общего центра инерции. Внутренняя четность нуклонов принята положительной. Таким образом для четности ядерного состояния справедливо выражение


где li - орбитальный момент i-го нуклона, A - количество нуклонов в ядре

В оболочечной модели спин ядра складывается из суммы спинов и орбитальных моментов отдельных нуклонов. Принцип Паули и специфика ядерного

Слайд 15Оболочечная модель во многих случаях хорошо воспроизводит экспериментальные значения спинов

и четностей, электрических квадрупольных и магнитных моментов атомных ядер, средние

времена жизни   β-активных ядер, объясняет распределение ядер изомеров.     Наилучшие предсказания оболочечная модель дает для ядер вблизи заполненных оболочек, для которых самосогласованный потенциал сферически-симметричный. Однако в атомном ядре наблюдаются возбужденные состояния и другого типа - многонуклонные возбужденные состояния, в которых движение отдельных нуклонов скоррелировано. Это колебательные и вращательные возбуждения атомных ядер (рис. 2-3)
Оболочечная модель во многих случаях хорошо воспроизводит экспериментальные значения спинов и четностей, электрических квадрупольных и магнитных моментов

Слайд 16Рис.2 Колебания ядра: а - монопольная объемная мода, б -

квадрупольная поверхностная мода, в - нейтрон-протонные поляризационные колебания

Рис.2 Колебания ядра: а - монопольная объемная мода, б - квадрупольная поверхностная мода, в - нейтрон-протонные поляризационные

Слайд 17Рис. 3. Вращательный спектр сильно деформированного ядра 170Hf

Рис. 3. Вращательный спектр сильно деформированного ядра 170Hf

Слайд 18Модель, которая позволила бы одновременно учесть как одночастичные так и

коллективные степени свободы ядра - обобщенная модель была предложена в

начале 50-х годов Д. Рейнуотером, О. Бором и Б. Моттельсоном. В этой модели предполагается сильная связь внешних по отношению к заполненным оболочкам нуклонов с остовом, что может приводить к устойчивой равновесной деформации ядра. Движение остова описывается в гидродинамической модели. Одночастичные состояния рассчитываются в деформированном потенциале. Впервые такие расчеты одночастичных состояний с использованием деформированного аксиально-симметричного потенциала были выполнены в 1955 году Нильссоном 
Модель, которая позволила бы одновременно учесть как одночастичные так и коллективные степени свободы ядра - обобщенная модель

Слайд 19Литература:
Э.И. Кэбин "Физика ядра и частиц. ХХ век" М., Изд-во

Московского университета. 2000. В Web-версии учтены современные ядерные данные. Публикацию подготовил

Э.Кэбин.
http://nuclphys.sinp.msu.ru/introduction/index.html
http://nuclphys.sinp.msu.ru/enc/e104.htm
Литература:Э.И. Кэбин

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика