Разделы презентаций


Понятие о геометрическом теле и его поверхности. Многогранники. Призма

Содержание

1. Дайте определения следующим понятиям:Перпендикуляр к плоскости - …Наклонная к плоскости - …Проекция наклонной - …Двугранный угол - …Мера двугранного угла - …2. Сформулируйте теорему о трёх перпендикулярах

Слайды и текст этой презентации

Слайд 1Понятие о геометрическом теле и его поверхности. Многогранники. Призма.








*

Понятие о геометрическом теле и его поверхности.  Многогранники. Призма.*

Слайд 21. Дайте определения следующим понятиям:

Перпендикуляр к плоскости - …

Наклонная к

плоскости - …

Проекция наклонной - …

Двугранный угол - …

Мера двугранного

угла - …

2. Сформулируйте теорему о трёх перпендикулярах

1. Дайте определения следующим понятиям:Перпендикуляр к плоскости - …Наклонная к плоскости - …Проекция наклонной - …Двугранный угол

Слайд 3Тело – конечная замкнутая область

Поверхность тела - граница тела

Тело – конечная замкнутая областьПоверхность тела - граница тела

Слайд 4Многоугольник - замкнутая ломаная линия

Многоугольник - замкнутая ломаная линия

Слайд 5Многогранник - тело, поверхность которого состоит из конечного числа плоских

многоугольников

Эти многоугольники называются гранями,
их стороны – ребрами,
их вершины

– вершинами многогранника.

Многогранник - тело, поверхность которого состоит из конечного числа плоских многоугольниковЭти многоугольники называются гранями, их стороны –

Слайд 6Выпуклый многоугольник - многоугольник, обладающий свойством: все его точки лежат по

одну сторону от любой прямой, проходящей через любую из его

сторон.
Выпуклый многоугольник - многоугольник, обладающий свойством: все его точки лежат по одну сторону от любой прямой, проходящей

Слайд 7Выпуклый многогранник -многогранник, все диагонали которого лежат внутри него.
Выпуклый многогранник

- многогранник, расположенный по одну сторону от плоскости каждого многоугольника

на его поверхности

Выпуклый многогранник -многогранник, все диагонали которого лежат внутри него. Выпуклый многогранник - многогранник, расположенный по одну сторону

Слайд 8э
Призма

эПризма

Слайд 9
Призма - многогранник, у которого две грани: верхняя и нижняя

(основания призмы) – равные многоугольники с соответственно параллельными сторонами, а

все остальные грани– параллелограммы, плоскости которых параллельны одной прямой.

Параллелограммы A1А’1А’5 А5 , A2А’2А’1 А1 и т.д. называются боковыми гранями.

Рёбра A1А’1, A2А’2 и т.д. называются боковыми рёбрами.
Призма - многогранник, у которого две грани: верхняя и нижняя (основания призмы) – равные многоугольники с соответственно

Слайд 10Части призмы

Части призмы

Слайд 11Высота призмы - перпендикуляр, опущенный из любой точки одного основания

на плоскость другого.

Призма называется треугольной, четырёхугольной и т.д., в

зависимости от того, какой многоугольник лежит в основании.


Высота призмы - перпендикуляр, опущенный из любой точки одного основания на плоскость другого. Призма называется треугольной, четырёхугольной

Слайд 12Если боковые рёбра призмы перпендикулярны к плоскости основания, призма -

прямая; если нет- наклонная.

Если в прямой призме основание -

правильный многоугольник, то призма правильная. На рис.1 изображена наклонная пятиугольная призма.
Если боковые рёбра призмы перпендикулярны к плоскости основания, призма - прямая; если нет- наклонная. Если в прямой

Слайд 13

Перпендикулярным сечением призмы называется сечение, образованное плоскостью, перпендикулярной к боковому

ребру

Перпендикулярным сечением призмы называется сечение, образованное плоскостью, перпендикулярной к боковому ребру

Слайд 14прямые призмы
антипризмы

прямые призмы антипризмы

Слайд 15Призмы вокруг нас

Призмы вокруг нас

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика