При решении задач дифференцирования приходится искать производные функций различных классов. Мы рассмотрим основные правила дифференцирования, которые используем при нахождении производных. Обязательно остановимся на подробном решении примеров, чтобы понять принцип их применения.
Критическими точками функции называют внутренние точки области определения, в которых производная функции равна нулю или не существует.
Геометрический смысл точки перегиба состоит в том, что график функции f(x) переходит в этой точке с одной стороны касательной на другую, т.е. кривая и касательная взаимно пересекаются
(рисунок 1).
Другое интересное свойство точки перегиба состоит в том, что график функции f(x) в окрестности точки перегиба x0 расположен внутри одной пары вертикальных углов, образованных касательной и нормалью (рисунок 2).
Необходимое условие существования точки перегиба
Если x0 − точка перегиба функции f(x) и данная функция имеет вторую производную в некоторой окрестности точки x0, причем в точке x0 она непрерывна, то
f′′(x0)=0.
Пример решения задачи на обнаружения перегиба и выпуклостей
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть