можно найти по генеральной совокупности, что практически невозможно. По выборке
из этой совокупности мы находим лишь их точечные оценки и , но насколько их значения близки истинным М[X] и D[X]? Например, как велика разность ? может быть как больше, так и меньше М[X]. Поэтому наряду с точечными оценками, применяют интервальные оценки параметров генеральной совокупности по выборке.
То есть мы хотим найти интервал ΔX, такой что: или
Если известна функция распределения, то этот интервал можно найти из соотношения:
зная границы интервала, мы найдём вероятность случайной величины принимать значения из данного интервала. Но нам требуется решить обратную задачу: определить границы интервала, следовательно, для этого надо заранее задать вероятность, с которой мы этот интервал будем определять. Эту вероятность называют доверительной вероятностью РД, а определённый с её помощью интервал -- доверительным интервалом ΔXд.
Доверительным интервалом какого либо параметра, называют такой интервал, о котором можно сказать, что с вероятностью РД он содержит в себе этот параметр.
Доверительную вероятность обычно берут равной РД=0,95, но в особо ответственных случаях принимают РД=0,99 или даже РД=0,999.
С доверительной вероятностью связан уровень значимости α=1-РД.
Уровень значимости α --это вероятность того, что значение исследуемого параметра не попадёт в доверительный интервал.