Разделы презентаций


Логика. Решение экзаменационных задач

Содержание

Немного теории…Алгебра логики – это раздел математики, изучающий высказывания со стороны их логических значений истинности или ложности.Высказывание – это повествовательное предложение, относительно которого можно сказать истинно оно или ложно.Пример:Москва – это

Слайды и текст этой презентации

Слайд 1Логика. Решение экзаменационных задач.
Автор: учитель информатики и ИКТ
МБОУ

«СОШ №9» г. Энгельса
Ивачева Мария Александровна

Логика. Решение экзаменационных задач.Автор: учитель информатики и ИКТ МБОУ «СОШ №9» г. Энгельса Ивачева Мария Александровна

Слайд 2Немного теории…
Алгебра логики – это раздел математики, изучающий высказывания со

стороны их логических значений истинности или ложности.
Высказывание – это повествовательное

предложение, относительно которого можно сказать истинно оно или ложно.
Пример:
Москва – это столица России
Сейчас идет снег
Растения не выделяют кислород
Немного теории…Алгебра логики – это раздел математики, изучающий высказывания со стороны их логических значений истинности или ложности.Высказывание

Слайд 3Логические операции
Операция отрицания


2) Логическое умножение (конъюнкция)


3) Логическое сложение

(дизъюнкция)


Логические операцииОперация отрицания  2) Логическое умножение (конъюнкция)3) Логическое сложение (дизъюнкция)

Слайд 4Логические операции
4) Импликация (следование)


5) Эквивалентность


6) Исключающее ИЛИ

Логические операции4) Импликация (следование)5) Эквивалентность6) Исключающее ИЛИ

Слайд 5Законы алгебры логики

Законы алгебры логики

Слайд 6Решение задач

Решение задач

Слайд 7Задача №1
Для какого числа X истинно высказывание:
((x

4)4
Решение:
Подставляем в выражение предложенные варианты ответа и определяем, истинно выражение

или ложно:
1) x=1: ((1<4)→(1<3))^((1<3)→(1<1))=(1→1)^(1→0)
Сначала вычислим выражение в скобках:
(1→1)^(1→0)=1^0=0 (не подходит)
Аналогично подставляем другие варианты ответа, вычисляем:
2) x=2: ((2<4)→(2<3))^((2<3)→(2<1))=(1→1)^(1→0)=1^0=0 (не подходит)
3) x=3: ((3<4)→(3<3))^((3<3)→(3<1))=(1→0)^(0→0)=0^1=0 (не подходит)
4) x=4: ((4<4)→(4<3))^((4<3)→(4<1))=(0→0)^(0→0)=1^1=1 (подходит)
Ответ: 4.


задания

Задача №1Для какого числа X истинно высказывание:((x

Слайд 8Задача №2
Для какого имени ложно высказывание:
(первая буква гласная ^последняя буква

согласная)→ ¬(третья буква согласная)?
Дмитрий 2) Антон 3) Екатерина 4) Анатолий
Решение:
Подставляем

в выражение предложенные варианты ответа и определяем, истинно выражение или ложно:
Дмитрий: (0 ^ 1)→ ¬(0)=0→1 = 1 (не подходит)
Антон: (1 ^ 1)→ ¬(1)=1→0 = 0 (подходит)
Екатерина: (1 ^ 0)→ ¬(0)=0→1 = 1 ( не подходит)
Анатолий: (1 ^ 1)→ ¬(0)=1→1 = 1 ( не подходит)
Ответ: 2.



задания

Задача №2Для какого имени ложно высказывание:(первая буква гласная ^последняя буква согласная)→ ¬(третья буква согласная)?Дмитрий 2) Антон 3)

Слайд 9Задача №3
Построить таблицу истинности для следующей функции:
F(X,Y,Z)=(x→y)·z + ¬y
Решение:
1) Нарисуем

таблицу на K строк, где K=2n, n - количество
высказываний в

функции
N=3, k=8 строк
2) Запишем в таблице все варианты X,Y,Z и вычисляем выражение по
действиям:

задания

Задача №3Построить таблицу истинности для следующей функции:F(X,Y,Z)=(x→y)·z + ¬yРешение:1) Нарисуем таблицу на K строк, где K=2n, n

Слайд 10Задача №4
Символом F обозначено одно из указанных ниже
логических выражений от

3-х аргументов X,Y,Z. Дан
фрагмент таблицы истинности выражения F.
Какое выражение соответствует

F?



Решение:
Подставляем значения X,Y,Z из таблицы в предложенные варианты ответа,
сравниваем со значением F(X,Y,Z):


Ответ: 4


задания

Задача №4Символом F обозначено одно из указанных нижелогических выражений от 3-х аргументов X,Y,Z. Данфрагмент таблицы истинности выражения

Слайд 11Задача №5
Какое логическое выражение равносильно выражению:







Решение: применим отрицание к выражению

в скобках в соответствии с законом инверсии:


Ответ: 2.


задания

Задача №5Какое логическое выражение равносильно выражению:Решение: применим отрицание к выражению в скобках в соответствии с законом инверсии:Ответ:

Слайд 12Задача №6
Каково наименьшее натуральное число X, при котором
истинно высказывание

Решение: Импликация ложна, когда первое выражение истинно, а второе ложно(см.

таблицы истинности). Во всех остальных случаях импликация истинна. Первое выражение ложно для всех натуральных x>10 и истинно для всех натуральных x<11. Второе выражение истинно для всех натуральных x>9 и ложно для всех натуральных x<10. Следовательно, данная импликация истинна для всех натуральных x>9. Наименьшее число, соответствующее этому условию x=10.
Ответ: 10.

задания

Задача №6Каково наименьшее натуральное число X, при которомистинно высказывание  Решение: Импликация ложна, когда первое выражение истинно,

Слайд 13Задача №7
Найдите все тройки значения L,M,N, при которых указанное выражение

принимает ложное значение.

Решение:
Из таблицы истинности импликации получаем, что L=0, а



Подставляем полученное значение L в выражение в скобках:

Из таблицы истинности дизъюнкции следует,
что выражение истинно тогда и только тогда, когда
(M=1, N=0) или (M=0, N=1) или (M=1, N=1). Поскольку L=0,
ответом будут все тройки (L=0, M=1, N=0), (L=0, M=0, N=1),
(L=0,M=1, N=1).
Ответ: (L=0, M=1, N=0), (L=0, M=0, N=1), (L=0, M=1, N=1).

задания

Задача №7Найдите все тройки значения L,M,N, при которых указанное выражение принимает ложное значение.Решение:Из таблицы истинности импликации получаем,

Слайд 14Задача №8
В таблице приведены запросы к поисковому серверу:




Расположите номера запросов в порядке возрастания количества страниц, которые

найдёт поисковый сервер по каждому запросу.
Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» − &.

Задача №8В таблице приведены запросы к поисковому серверу:    Расположите номера запросов в порядке возрастания

Слайд 15Задача №8
Решение:
Воспользуемся кругами Эйлера (диаграммами Вена):










Ответ: 4123.
задания

Задача №8Решение:Воспользуемся кругами Эйлера (диаграммами Вена):Ответ: 4123.задания

Слайд 16Задача №9
В табличной форме представлен фрагмент базы данных о результатах

тестирования учащихся :










Сколько записей в данном фрагменте удовлетворяют условию
а) «Пол=’м’

ИЛИ Химия>Биология»?
б) «Пол=’м’ И Химия>Биология»?
Задача №9В табличной форме представлен фрагмент базы данных о результатах тестирования учащихся :Сколько записей в данном фрагменте

Слайд 17Задача №9
Решение:
Первому условию Пол=’м’ удовлетворяют записи №2, №3.
Второму условию Химия>Биология

удовлетворяют записи №2,№5,№6.

Значит условию «Пол=’м’ ИЛИ Химия>Биология» удовлетворяет 4 записи.
Условию

«Пол=’м’ И Химия>Биология» удовлетворяет 1 запись.

Ответ: а) 4,
б) 1.

задания

Задача №9Решение:Первому условию Пол=’м’ удовлетворяют записи №2, №3.Второму условию Химия>Биология удовлетворяют записи №2,№5,№6.Значит условию «Пол=’м’ ИЛИ Химия>Биология»

Слайд 18Задания
1) Для какого числа X истинно высказывание:


1)1 2)3 3)4 4)2
2) Для какого числа X истинно высказывание:

1)1 2)2 3)3 4)4
3) Для какого числа X истинно высказывание:

1)1 2)2 3)3 4)4
4) Для какого числа X истинно высказывание:

1)1 2)2 3)3 4)4
5) Для какого числа X истинно высказывание:

1)1 2)2 3)3 4)4



Задания1) Для какого числа X истинно высказывание:

Слайд 19Задания
1) Для какого имени истинно высказывание:

1)

КСЕНИЯ 2) ЮЛИЯ 3) ПЕТР 4) АЛЕКСЕЙ
2) Для

какого имени истинно высказывание:
1) Антон 2) Федор 3) Елена 4) Вадим
Для какого имени истинно высказывание:

1) Иван 2) Петр 3) Елена 4) Павел
4) Для какого слова ложно высказывание:


1) кенгуру 2) антилопа 3) ящерица 4) крокодил
5) Для какого слова истинно высказывание:


1) гаоцин 2) скворец 3) ласточка 4) моёвка



 
 





Задания1) Для какого имени истинно высказывание:   1) КСЕНИЯ 2) ЮЛИЯ  3) ПЕТР 4) АЛЕКСЕЙ

Слайд 20Задания
Заполните таблицу истинности логических
выражений:
1)

2)

3)

ЗаданияЗаполните таблицу истинности логическихвыражений:1)2)3)

Слайд 21Задания
Символом F обозначено одно из указанных ниже логических выражений от

3-х
аргументов X,Y,Z. Дан фрагмент таблицы истинности выражения F.
Какое выражение соответствует

F?
1)




2)




3)



ЗаданияСимволом F обозначено одно из указанных ниже логических выражений от 3-харгументов X,Y,Z. Дан фрагмент таблицы истинности выражения

Слайд 22Задания
1) Какое логическое выражение равносильно выражению:





2) Какое логическое выражение равносильно

выражению:





3) Какое логическое выражение равносильно выражению:





Задания1) Какое логическое выражение равносильно выражению:2) Какое логическое выражение равносильно выражению:3) Какое логическое выражение равносильно выражению:

Слайд 23Задания
1) Каково наименьшее натуральное число X, при котором
истинно высказывание

2) Каково

наибольшее целое число X, при котором
ложно высказывание

3) Каково наибольшее целое

число X, при котором
истинно высказывание


4) Каково наибольшее целое число X, при котором
ложно высказывание

5) Каково наибольшее целое число X, при котором
истинно высказывание




Задания1) Каково наименьшее натуральное число X, при которомистинно высказывание2) Каково наибольшее целое число X, при которомложно высказывание3)

Слайд 24Задания
1) Найдите значения логических A,B,C,D, при которых указанное

логическое выражение ложно. Ответ запишите в виде строки из четырех

символов: значений переменных A,B,C,D (в указанном порядке). Так, например, строка 0101 соответствует тому, что A=0, B=1, C=0, D=1.
a)

b)

2) Сколько различных решений имеет уравнение

где K, L, M, N - логические переменные?


Задания  1) Найдите значения логических A,B,C,D, при которых указанное логическое выражение ложно. Ответ запишите в виде

Слайд 25Задания
В таблицах приведены запросы к поисковому серверу:
1)



Расположите номера запросов

в порядке возрастания количества
страниц, которые найдёт поисковый сервер по каждому

запросу.
2)



Расположите номера запросов в порядке убывания количества
страниц, которые найдёт поисковый сервер по каждому запросу.
3)



Расположите номера запросов в порядке возрастания количества
страниц, которые найдёт поисковый сервер по каждому запросу.





ЗаданияВ таблицах приведены запросы к поисковому серверу:1) Расположите номера запросов в порядке возрастания количествастраниц, которые найдёт поисковый

Слайд 26Задания
Ниже в табличной форме представлен фрагмент базы данных о погоде.








a)

Сколько записей в данном фрагменте удовлетворяют условию
(Осадки=«дождь») ИЛИ (давление

750)?
б) Сколько записей в данном фрагменте удовлетворяют условию
(Осадки=«дождь») И (давление ≤ 750)?



К следующему заданию

ЗаданияНиже в табличной форме представлен фрагмент базы данных о погоде.a) Сколько записей в данном фрагменте удовлетворяют условию(Осадки=«дождь»)

Слайд 27Задания
2) В таблице приведены данные о составе и калорийности некоторых

продуктов:







Сколько записей в данной таблице удовлетворяют условию:
Вода>85 ИЛИ (белки+углеводы

И ккал>38) ?



Задания2) В таблице приведены данные о составе и калорийности некоторых продуктов:Сколько записей в данной таблице удовлетворяют условию:Вода>85

Слайд 28Источники материалов:
http://s99-omsk.narod.ru/pupil/vip/i2003/i2003/logika/be.gif
http://school.sgu.ru
П. А. Якушкин, С. С. Крылов, ЕГЭ 2010. Информатика:

сборник экзаменационных заданий. М.: Эксмо, 2009
П. А. Якушкин, В.

Р. Лещинер, Информатика: типовые тестовые задания. М.: Экзамен, 2012
Л. Н. Евич, С. Ю. Кулабухов, Информатика и ИКТ. 10-11 классы. Тематические тесты. Подготовка к ЕГЭ. Базовый, повышенный, высокий уровни: типовые тестовые задания. Ростов-на-Дону: Легион - М, 2011
Демонстрационный вариант контрольных измерительных материалов для проведения в 2012 году государственной (итоговой) аттестации (в новой форме) по ИНФОРМАТИКЕ и ИКТ


Источники материалов:http://s99-omsk.narod.ru/pupil/vip/i2003/i2003/logika/be.gifhttp://school.sgu.ruП. А. Якушкин, С. С. Крылов, ЕГЭ 2010. Информатика: сборник экзаменационных заданий. М.: Эксмо, 2009 П.

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика