Решение. При правильной игре выигрывает тот, кто начинает - первый игрок. Вот его стратегия. Первым ходом он кладёт монету в центр стола. Затем после каждого хода второго первый кладёт монету симметрично монете, только что положенной вторым, относительно центра стола (рис. 1). Очевидно, если возможен очередной ход второго игрока, то возможен и симметричный ему ответный ход первого. Следовательно, первый игрок побеждает.
Решение. Построим точку A', симметричную A относительно прямой l. Заметим, что для любой точки C, лежащей на прямой l, AC=A'C. Поэтому
AC+BC=A'C+BC.
В силу неравенства треугольника сумма A'C+BC минимальна тогда и только тогда, когда точка C лежит на отрезке A'B (рис. 2). Итак, C=A'B l.
Как известно, сложение векторов и поворот перестановочны: если сумму нескольких векторов повернуть на угол φ и, наоборот, каждый из векторов-слагаемых повернуть на тот же угол, а затем сложить, результат будет один и тот же. Кроме того, сумма векторов не зависит от их порядка. Поэтому:
Итак, вектор не меняется при повороте на угол 0o<φ <360o. Значит, = .
х 2 + у 2 = (х + у) 2 - 2ху = u 2 - 2v,
х 3 + у 3 = (х + у)(х 2 -ху + у 2) = u (u 2- 2v – v) = u 3 - 3uv,
х4 + у 4 = (х 2 + у 2)2 - 2х 2у 2 = (u 2 - 2v) 2 - 2v 2 = u 4 - 4u 2v + 2v 2,
х 2 + ху + у 2 = u 2 - 2v + v = u 2 - v и т.д.
Произведем обратную замену.
х + у = 4,
ху = 3;
х = 4 – у
ху = 3;
х = 4 – у,
(4 – у) у = 3;
х = 4 – у,
у 1 = 3; у 2= 1;
х 1 = 1, х 2 = 3,
у 1 = 3, у 2 = 1.
Ответ: (1; 3); (3; 1).
Ответ:
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть