Разделы презентаций


Доклад на тему "Что такое топология. Лист Мебиуса."

Тополо́гия — раздел математики, изучающий: в самом общем виде — явление непрерывности; в частности — свойства пространств, которые остаются неизменными при непрерывных деформациях. Например, связность, ориентируемость, компактность. В отличие от геометрии,

Слайды и текст этой презентации

Слайд 1Доклад на тему "Что такое топология. Лист Мебиуса."
МБОУ Гимназии школы

№12
Ученицы 6 класса «В»
Ульяновой Ангелины

Доклад на тему

Слайд 2Тополо́гия — раздел математики, изучающий: в самом общем виде —

явление непрерывности; в частности — свойства пространств, которые остаются неизменными

при непрерывных деформациях. Например, связность, ориентируемость, компактность. В отличие от геометрии, в топологии не рассматриваются метрические свойства объектов.

Топология это-

Тополо́гия — раздел математики, изучающий: в самом общем виде — явление непрерывности; в частности — свойства пространств,

Слайд 4Лист Мёбиуса (ле́нта Мёбиуса) - топологический объект, простейшая неориентируемая поверхность

с краем, односторонняя в обычном трёхмерном евклидовом пространстве R3. Попасть

из одной точки этой поверхности в любую другую можно, не пересекая края. Лента Мёбиуса была открыта независимо немецкими математиками Августом Фердинандом Мёбиусом и Иоганном Бенедиктом Листингом в 1858 году. Модель ленты Мёбиуса может легко быть сделана. Для этого надо взять достаточно вытянутую бумажную полоску и соединить концы полоски, предварительно перевернув один из них. В евклидовом пространстве существуют два типа полос Мёбиуса в зависимости от направления закручивания: правые и левые.

Лист Мёбиуса это-

Лист Мёбиуса (ле́нта Мёбиуса) - топологический объект, простейшая неориентируемая поверхность с краем, односторонняя в обычном трёхмерном евклидовом

Слайд 5Лист Мёбиуса иногда называют прародителем символа бесконечности \infty , так

как находясь на поверхности ленты Мёбиуса, можно было бы идти

по ней вечно. Это не соответствует действительности, так как символ \infty использовался для обозначения бесконечности в течение двух столетий до открытия ленты Мёбиуса. (см. символ бесконечности).
Лист Мёбиуса иногда называют прародителем символа бесконечности \infty , так как находясь на поверхности ленты Мёбиуса, можно

Слайд 6Лента Мёбиуса обладает любопытными свойствами. Если попробовать разрезать ленту вдоль

по линии, равноудалённой от краёв, вместо двух лент Мёбиуса получится

одна длинная двухсторонняя (вдвое больше закрученная, чем лента Мёбиуса) лента, которую фокусники называют «афганская лента». Если теперь эту ленту разрезать вдоль посередине, получаются две ленты намотаные друг на друга. Если же разрезать ленту Мёбиуса, отступая от края приблизительно на треть её ширины, то получаются две ленты, одна — более тонкая лента Мёбиуса, другая — длинная лента с двумя полуоборотами (Афганская лента). Другие интересные комбинации лент могут быть получены из лент Мёбиуса с двумя или более полуоборотами в них. Например если разрезать ленту с тремя полуоборотами, то получится лента, завитая в узел трилистника. Разрез ленты Мёбиуса с дополнительными оборотами даёт неожиданные фигуры, названные парадромными кольцами.

Свойства

Лента Мёбиуса обладает любопытными свойствами. Если попробовать разрезать ленту вдоль по линии, равноудалённой от краёв, вместо двух

Слайд 7Параметрическое описаниелиста Мёбиуса.
Геометрия и топология
Чтобы превратить

квадрат в лист Мёбиуса, соедините края, помеченные \scriptstyle{A} так, чтобы

направления стрелок совпали.
Параметрическое описаниелиста Мёбиуса.    Геометрия и топологияЧтобы превратить квадрат в лист Мёбиуса, соедините края, помеченные

Слайд 8 x (u, v) = \left (1 +\frac {v} {2}

\cos\frac {u} {2} \right) \cos (u),
y (u, v)

= \left (1 +\frac {v} {2} \cos\frac {u} {2} \right) \sin (u),
z (u, v) = \frac {v} {2} \sin\frac {u} {2},
где 0\leqslant u <2\pi и -1\leqslant v\leqslant 1 . Эти формулы задают ленту Мёбиуса ширины 1, чей центральный круг имеет радиус 1, лежит в плоскости x - y с центром в (0,\;0,\;0). Параметр u пробегает вдоль ленты, в то время как v задает расстояние от края.\
В цилиндрических координатах (r,\;\theta,\;z), неограниченная версия листа Мёбиуса может быть представлена уравнением:
\log (r) \sin\left (\frac {\theta} {2} \right) =z\cos\left (\frac {\theta} {2} \right).
Топологически лист Мёбиус может быть определен как факторпространство квадрата [0,\;1]\times[0,\;1] по отношению эквивалентности (x,\;0)\sim(1-x,\;1) для 0\leqslant x\leqslant 1.
Лист Мёбиуса — неориентируемая поверхность с краем.
Лист Мёбиуса — это также пространство нетривиального расслоения над окружностью с слоем отрезок.

Одним из способов представления листа Мёбиуса как подмножества \R^3 является параметризация:

x (u, v) = \left (1 +\frac {v} {2} \cos\frac {u} {2} \right) \cos (u), y

Слайд 9Спасибо за внимание!!!
Ульян-Ангелина благодарит

Спасибо за внимание!!! Ульян-Ангелина благодарит

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика