Разделы презентаций


Физические основы механики

Содержание

Тема: ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА1. Динамика вращательного движения твердого тела относительно точки2. Динамика вращательного движения твердого тела относительно оси3. Расчет моментов инерции некоторых

Слайды и текст этой презентации

Слайд 1Физические основы механики
Иванова Дарья 1Пи1

Физические основы механикиИванова Дарья 1Пи1

Слайд 2Тема: ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА
1. Динамика вращательного движения твердого тела

относительно точки
2. Динамика вращательного движения твердого

тела относительно оси
3. Расчет моментов инерции некоторых простых тел. Теорема Штейнера
4. Кинетическая энергия вращающегося тела
5. Закон сохранения момента импульса
6. Законы сохранения и их связь с симметрией
пространства и времени
7. Сходство и различие линейных и угловых характеристик движения
Тема: ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА1. Динамика вращательного движения твердого тела     относительно точки2.

Слайд 31. Динамика вращательного движения твердого тела относительно точки
Рассмотрим твердое тело,

как некую систему (рис.), состоящую из n точек (m1 m2

… mn); – радиус-вектор i-ой точки, проведенный из точки О – центра неподвижной инерциальной системы отсчета.









Обозначим – внешняя сила, действующая на i-ю точку, – сила действия со стороны k-ой точки на i-ю.
1. Динамика вращательного движения твердого тела относительно точки	Рассмотрим твердое тело, как некую систему (рис.), состоящую из n

Слайд 4 Запишем основное уравнение динамики для точки (см. п. 3.6):
Рисунок 1

Запишем основное уравнение динамики для точки (см. п. 3.6):Рисунок 1

Слайд 5Умножим обе части векторно на
Знак производной можно вынести за

знак векторного произведения (и знак суммы тоже), тогда:

Умножим обе части векторно на 	Знак производной можно вынести за знак векторного произведения (и знак суммы тоже),

Слайд 6 Векторное произведение точки на её импульс называется

моментом импульса этой точки относительно точки О.
(1.1)


Эти три вектора образуют правую тройку векторов, связанных «правилом буравчика»:

Рисунок 2

Векторное произведение    точки на её импульс называется моментом импульса    этой точки

Слайд 7 Векторное произведение
проведенного

в точку приложения сил, на эту силу называется моментом силы
(1.2)


Обозначим li – плечо силы Fi, (рис.3). Т.к

то:

(1.3)

Рисунок 3

Векторное      произведение   проведенного в точку приложения сил, на эту силу

Слайд 8C учетом новых обозначений:
(1.4)
Запишем систему n уравнений для

всех точек системы и сложим, левые и правые части уравнений:
Так

как

то

C учетом новых обозначений: (1.4) 	Запишем систему n уравнений для всех точек системы и сложим, левые и

Слайд 9 Здесь сумма производных равна производной суммы:
где – момент

импульса системы,

– результирующий момент всех внешних сил относительно точки О.
Окончательно получим:

Здесь сумма производных равна производной суммы:где   – момент    импульса   системы,

Слайд 10 Основной закон динамики вращательного движения твердого тела, вращающегося вокруг точки.
Момент

импульса системы является основной динамической характеристикой вращающегося

тела.
Сравнивая это уравнение с основным уравнением динамики поступательного движения, мы видим их внешнее сходство
Основной закон динамики вращательного движения твердого тела, вращающегося вокруг точки.	Момент импульса системы    является основной

Слайд 12Или L = [r,p]
Здесь L  трехмерный момент импульса

относительно центра вращения О.

Или  L = [r,p]Здесь L  трехмерный момент импульса относительно центра вращения О.

Слайд 132. Динамика вращательного движения твердого тела относительно оси

2. Динамика вращательного движения твердого тела относительно оси

Слайд 14 В этом случае составляющие
– момента

внешних сил, направленные вдоль x и y, компенсируются моментами сил

реакции закрепления.
Вращение вокруг оси z происходит только под действием

Рисунок 4 Рисунок 5

В этом   случае   составляющие – момента внешних сил, направленные вдоль x и y,

Слайд 15 Пусть некоторое тело вращается вокруг оси z Получим уравнение динамики

для некоторой точки mi этого тела находящегося на расстоянии Ri

от оси вращения. При этом помним, что и
направлены всегда вдоль оси вращения z, поэтому в дальнейшем опустим значок z.

или

Пусть некоторое тело 					вращается вокруг оси z 					Получим уравнение динамики 			для некоторой точки mi этого тела находящегося

Слайд 16 Так как у всех точек разная,

введем,
вектор угловой скорости причем
Тогда
Так как

тело абсолютно твердое, то в процессе вращения mi и Ri останутся неизменными. Тогда:
Так как   у всех  точек  				разная, введем, 			вектор угловой скорости   				причем

Слайд 17 Обозначим Ii – момент инерции точки находящейся на расстоянии R

от оси вращения:
(2.1)
Так как тело состоит из ог- огромного

количества точек и все они находятся на разных расстояниях от оси вращения, то момент инерции тела равен:

(2.2)

где R – расстояние от оси z до dm.
Как видно, момент инерции I – величина скалярная.

Обозначим Ii – момент инерции точки находящейся на расстоянии R от оси вращения:	 (2.1) 			Так как тело

Слайд 18Просуммировав (2.1) по всем i-ым точкам,

получим


или

(2.3)

Это основное уравнение динамики тела вращающегося вокруг неподвижной оси. (Сравним:
– основное уравнение динамики поступательного движения тела).

Просуммировав (2.1) по всем i-ым точкам, получим

Слайд 19 (2.4)
Где – момент импульса тела вращающегося вокруг

оси z
(Сравним: для

поступательного движения).

При этом помним, что и динамические характеристики вращательного движения направленные всегда вдоль оси вращения. Причем, определяется направлением вращения, как и а – зависит от того, ускоряется или замедляется вращение.
(2.4) 			Где   – момент импульса 				тела вращающегося вокруг 				оси z			(Сравним:

Слайд 20Повторим основные характеристики вращательного движения
Момент импульса
Эти формулы получены для одной

точки вращающегося твердого тела



Суммируя по всему телу, получим
Момент силы
Li|z
Mi
Момент инерции
Момент

импульса твердого тела

Момент силы твердого тела

Момент инерции твердого тела

Основной закон динамики вращательного движения твердого тела

Z

K

ω

ri

Повторим основные характеристики вращательного движенияМомент импульсаЭти формулы получены для одной точки вращающегося твердого телаСуммируя по всему телу,

Слайд 213. Расчет моментов инерции некоторых простых тел.

3. Расчет моментов инерции некоторых простых тел.

Слайд 22 Моменты инерции шара, сферы, диска, обруча и

стержня приведены на рис. 6.
Шар



Сфера
Диск



Обруч
Стержень

Моменты инерции шара, сферы, диска, обруча и стержня приведены на рис. 6.ШарСфераДискОбручСтержень

Слайд 23X
Y
Z
K
ri
ω
ε
При вычислении момента инерции тела, вращающегося вокруг оси, не проходящей

через центр инерции, следует пользоваться теоремой о параллельном переносе осей

или теоремой Штейнера (Якоб Штейнер, швейцарский геометр 1796 – 1863 гг.).

Теорема Штейнера

XYZKriωε	При вычислении момента инерции тела, вращающегося вокруг оси, не проходящей через центр инерции, следует пользоваться теоремой о

Слайд 24

Момент инерции тела
относительно любой оси вращения равен моменту его

инерции
относительно параллельной оси, проходящей через центр масс С

тела, плюс произведение массы тела на квадрат расстояния между осями.

Теорема Штейнера

Момент инерции тела относительно любой оси вращения равен моменту его инерции относительно параллельной оси, проходящей через центр

Слайд 25 Пример: стержень массой m, длиной l, вращается вокруг оси,

проходящей через конец стержня (рис).

Пример: стержень массой m, длиной l, вращается вокруг оси, проходящей через конец стержня (рис).

Слайд 264. Кинетическая энергия вращающегося тела

4. Кинетическая энергия вращающегося тела

Слайд 27 Если тело вращается вокруг неподвижной оси z с угловой скоростью

то линейная скорость i-й точки

Следовательно,
Сопоставив

(4.1) и (4.2) можно увидеть, что момент инерции тела I – является мерой инертности при вращательном движении. Так же как масса m – мера инерции при поступательном движении.
Если тело вращается вокруг неподвижной оси z с угловой скоростью    то линейная скорость

Слайд 28 В общем случае движение твердого тела можно представить в виде

суммы двух движений – поступательного со скоростью и

вращательного с угловой скоростью вокруг мгновенной оси, проходящей через центр инерции. Полная кинетическая энергия этого тела:

. (4.3)

Здесь Ic – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции.

В общем случае движение твердого тела можно представить в виде суммы двух движений – поступательного со скоростью

Слайд 29Пример:Скорость центра масс обруча равна v, масса обруча m. Определим

его кинетическую энергию при движении по горизонтальной поверхности.
Имеем
Kполн =

+ ,

– линейная скорость обода.
Для наблюдателя,
движущегося вместе с центром
обруча, скорость точки
соприкосновения обруча с плоскостью
равна v. Поэтому = v.

Таким образом, Kполн = + = mv2.


Пример:Скорость центра масс обруча равна v, масса обруча m. Определим его кинетическую энергию при движении по горизонтальной

Слайд 305. Закон сохранения момента импульса
Закон сохранения момента импульса

5. Закон сохранения момента импульсаЗакон сохранения момента импульса

Слайд 31 Закон сохранения момента импульса – момент импульса замкнутой системы тел

относительно любой неподвижной точки не изменяется с течением времени.
Это один

из фундаментальных законов природы.
Аналогично для замкнутой системы вращающихся вокруг оси z:

отсюда

или

Закон сохранения момента импульса – момент импульса замкнутой системы тел относительно любой неподвижной точки не изменяется с

Слайд 32 Если момент внешних сил относительно неподвижной оси вращения тождественно равен

нулю, то момент импульса относительно этой оси не изменяется в

процессе движения.
Момент импульса и для незамкнутых систем постоянен, если результирующий момент внешних сил, приложенных к системе, равен нулю.

Если момент внешних сил относительно неподвижной оси вращения тождественно равен нулю, то момент импульса относительно этой оси

Слайд 33Рисунок 9

Рисунок 10
Используется

гироскоп в различных навигационных устройствах кораблей, самолетов, ракет (гирокомпас, гирогоризонт).

Уравновешенный гироскоп – быстро вращающееся тело, имеющее три степени свободы

Рисунок 9

Слайд 36 Именно закон сохранения момента импульса используется танцорами на льду для

изменения скорости вращения. Или еще известный пример – скамья Жуковского.
Изученные

нами законы сохранения есть следствие симметрии пространства – времени.
Принцип симметрии был всегда путеводной звездой физиков, и она их не подводила.
Но вот в 1956 г. Ву Цзянь, обнаружил асимметрию в слабых взаимодействиях:
Именно закон сохранения момента импульса используется танцорами на льду для изменения скорости вращения. Или еще известный пример

Слайд 37он исследовал β – распад ядер изотопа Со60 в магнитном

поле и обнаружил, что число электронов, испускаемых вдоль направления магнитного

поля не равно числу электронов испускаемых в противоположенном направлении.
В этом же году Л. Ледерман и Р. Гарвин (США) обнаружили нарушение симметрии при распаде пионов и мюонов.
Эти факты означают, что законы слабого взаимодействия, не обладают зеркальной симметрией.
он исследовал β – распад ядер изотопа Со60 в магнитном поле и обнаружил, что число электронов, испускаемых

Слайд 38 6. Законы сохранения и их связь с симметрией пространства и времени
Три

фундаментальных закона природы: закон сохранения импульса, момента импульса и энергии.


Следует понимать, что эти законы выполняются только в инерциальных системах отсчета. В самом деле, при выводе этих законов мы пользовались вторым и третьим законами Ньютона, а последние применимы только в инерциальных системах.
6. Законы сохранения и их связь с симметрией пространства и времени 	Три фундаментальных закона природы: закон

Слайд 39 Напомним также, что импульс и момент импульса сохраняются в том

случае, если систему можно считать замкнутой (сумма всех внешних сил,

и собственно, всех моментов сил, равна нулю). Для сохранения же энергии тела условия замкнутости недостаточно – тело должно быть еще и адиабатически изолированным (т.е. не участвовать в теплообмене).
Напомним также, что импульс и момент импульса сохраняются в том случае, если систему можно считать замкнутой (сумма

Слайд 40 Во всей истории развития физики, законы сохранения оказались, чуть ли

не единственными законами, сохранившими свое значение при замене одних теорий

другими. Эти законы тесно связаны с основными свойствами пространства и времени.

Во всей истории развития физики, законы сохранения оказались, чуть ли не единственными законами, сохранившими свое значение при

Слайд 41 Равнозначность следует понимать в том смысле, что замена моментом времени

t1 на момент времени t2, без изменения значений координат и

скорости частиц не изменяет механические свойства системы. Это означает то, что после указанной замены, координаты и скорости частиц имеют в любой момент времен такие же значения, какие имели до замены, в момент времени

1. В основе закона сохранения энергии лежит однородность времени, т. е. равнозначность всех моментов времени (симметрия по отношению к сдвигу начала отсчета времени).

Равнозначность следует понимать в том смысле, что замена моментом времени t1 на момент времени t2, без изменения

Слайд 42 2. В основе закона сохранения импульса лежит однородность пространства, т.

е. одинаковость свойств пространства во всех точках (симметрия по отношению

к сдвигу начала координат).
Одинаковость следует понимать в том смысле, что параллельный перенос замкнутой системы из одного места пространства в другое, без изменения взаимного расположения и скоростей частиц, не изменяет механические свойства системы.
2. В основе закона сохранения импульса лежит однородность пространства, т. е. одинаковость свойств пространства во всех точках

Слайд 43 3. В основе закона сохранения момента импульса лежит изотропия пространства,

т. е. одинаковость свойств пространства по всем направлениям (симметрия по

отношению к повороту осей координат).
Одинаковость следует понимать в том смысле, что поворот замкнутой системы, как целого, не отражается на её механических свойствах.

3. В основе закона сохранения момента импульса лежит изотропия пространства, т. е. одинаковость свойств пространства по всем

Слайд 44 Так, если задана сила, действующая на материальную точку и начальные

условия, то можно найти закон движения, траекторию, величину и направление

скорости в любой момент времени и т. п. Законы же сохранения не дают нам прямых указаний на то, как должен идти тот или иной процесс. Они говорят лишь о том, какие процессы запрещены и потому в природе не происходят.
Таким образом, законы сохранения проявляются как принципы запрета:

Между законами типа основного уравнения динамики и законами сохранения имеется принципиальная разница.
Законы динамики дают нам представление о детальном ходе процесса.

Так, если задана сила, действующая на материальную точку и начальные условия, то можно найти закон движения, траекторию,

Слайд 45 Любое явление, при котором не выполняются хотя бы один из

законов сохранения, запрещено, и в природе такие явления никогда не

наблюдаются.
Всякое явление, при котором не нарушается ни один из законов сохранения, в принципе может происходить.
Рассмотрим следующий пример. Может ли покоящееся тело за счет внутренней энергии начать двигаться? Этот процесс не противоречит закону сохранения энергии. Нужно лишь, чтобы возникающая кинетическая энергия точно равнялась убыли внутренней энергии.

Принципы запрета:

Любое явление, при котором не выполняются хотя бы один из законов сохранения, запрещено, и в природе такие

Слайд 46 На самом деле такой процесс никогда не происходит, ибо он

противоречит закону сохранения импульса. Раз тело покоилось, то его импульс

был равен нулю. А если оно станет двигаться, то его импульс сам собой увеличится, что невозможно. Поэтому внутренняя энергия тела не может превратиться в кинетическую, если тело не распадётся на части.
Если же допустить возможность распада этого тела на части, то запрет, налагаемый законом сохранения импульса, снимается.
На самом деле такой процесс никогда не происходит, ибо он противоречит закону сохранения импульса. Раз тело покоилось,

Слайд 47 При этом возникшие осколки могут двигаться так, чтобы их центр

масс оставался в покое, – а только этого и требует

закон сохранения импульса.
Итак, для того чтобы внутренняя энергия покоящегося тела могла превратиться в кинетическую, это тело должно распадаться на части. Если же есть еще один какой-либо закон, запрещающий распад этого тела на части, то его внутренняя энергия и масса покоя будут постоянными величинами.
При этом возникшие осколки могут двигаться так, чтобы их центр масс оставался в покое, – а только

Слайд 48 Фундаментальность законов сохранения заключается в их универсальности:
Они справедливы при

изучении любых физических процессов (механических, тепловых, электромагнитных, и др.).
Они

одинаково применимы в релятивистском и нерелятивистском движении,
в микромире, где справедливы квантовые представления
и в макромире.
Фундаментальность законов сохранения заключается в их универсальности: Они справедливы при изучении любых физических процессов (механических, тепловых, электромагнитных,

Слайд 497. Сходство и различие линейных и угловых характеристик движения
Формулы кинематики и

динамики вращательного движения легко запоминаются, если сопоставить их с формулами

поступательного движения (см. таблицу 6.1).
7. Сходство и различие линейных и угловых характеристик движения	Формулы кинематики и динамики вращательного движения легко запоминаются, если

Слайд 50Поступательное движение Вращательное движение

Поступательное движение      Вращательное движение

Слайд 54Спасибо за внимание!!!

Спасибо за внимание!!!

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика