Разделы презентаций


ТЕОРИЯ МНОЖЕСТВ ОТНОШЕНИЯ

Содержание

Цель лекции – ознакомиться и овладеть понятиями «отношение», «алгебра отношений», изучить операции над отношениями для применения в задачах компьютерной инженерииСодержание: Понятие n-местного отношения. Совместимость отношений Операции над отношениями Реляционная

Слайды и текст этой презентации

Слайд 1ТЕОРИЯ МНОЖЕСТВ ОТНОШЕНИЯ
ЛЕКЦИЯ 3

Факультет компьютерной инженерии и управления, кафедра АПВТ, ХНУРЭ
Лектор

– д.т.н., проф. Хаханов В.И.
ДИСКРЕТНАЯ МАТЕМАТИКА

ТЕОРИЯ МНОЖЕСТВ ОТНОШЕНИЯЛЕКЦИЯ 3Факультет компьютерной инженерии и управления, кафедра АПВТ, ХНУРЭЛектор – д.т.н., проф. Хаханов В.И.ДИСКРЕТНАЯ МАТЕМАТИКА

Слайд 2Цель лекции – ознакомиться и овладеть понятиями «отношение», «алгебра отношений»,

изучить операции над отношениями для применения в задачах компьютерной инженерии
Содержание:


Понятие n-местного отношения.
Совместимость отношений
Операции над отношениями
Реляционная алгебра
Дополнительные операции над отношениями
Пример применения отношений при составлении реляционной базы данных

Тема: Отношения

Цель лекции – ознакомиться и овладеть понятиями «отношение», «алгебра отношений», изучить операции над отношениями для применения

Слайд 3Литература
Горбатов В.А. Основы дискретной математики. М.: Высш. шк., 1986.

9-12 с.
Лавров И.А., Максимова Л.Л. Задачи по теории множеств,

математической логике и теории алгоритмов. М.: Наука. Главная редакция физико-математической литературы, 1984. 8-12 с.
Кузнецов О.П., Адельсон-Вельский Г.М. Дискретная математика для инженера. М.: Энергия, 1980. 12-21 с.
Богомолов А.М., Сперанский Д.В. Аналитические методы в задачах контроля и анализа дискретных устройств. Саратов: Изд-во Саратовского ун-та, 1986. 240с.
Новиков Ф.А. Дискретная математика для программистов. С.-П., 2001. С. 4-24.
Хаханов В.І., Хаханова І.В., Кулак Е.М., Чумаченко С.В. Методичні вказівки до практичних занять з курсу “Дискретна математика”. Харків, ХНУРЕ. 2001. 21-23 с.
Литература Горбатов В.А. Основы дискретной математики. М.: Высш. шк., 1986. 9-12 с. Лавров И.А., Максимова Л.Л. Задачи

Слайд 4Термины
Базовые понятия:
множество,
подмножество,
упорядоченная
пара,
вектор,

декартово (прямое) произведение множеств
Ключевые слова:
отношение,
степень отношения,
совместимость

отношений,
реляционная алгебра,
операции над отношениями:
объединение,
пересечение,
разность,
расширенное декартово произведение,
выбор,
проекция,
соединение
ТерминыБазовые понятия: множество, подмножество, упорядоченная пара, вектор, декартово (прямое) произведение множествКлючевые слова: отношение, степень отношения, совместимость отношений,

Слайд 5Def: n-местным отношением на множестве M называется подмножество декартовой степени

множества М:
RnМn
Элементы х1, х2, …, хn находятся в отношении,

если (х1, х2, …, хn)Rn
n – степень отношения (-арность)
RA2 – бинарное отношение;
RA3 – тернарное отношение;
RAn – n-арное отношение
Совместимые отношения – отношения одинаковых степеней

Определение отношения

Def: n-местным отношением на множестве M называется подмножество декартовой степени множества М: RnМnЭлементы х1, х2, …, хn

Слайд 6Операции над отношениями. 1
Для совместимых отношений αAn, βВn имеют место
следующие

операции:

Операции над отношениями. 1Для совместимых отношений αAn, βВn имеют местоследующие операции:

Слайд 7Операции над отношениями. 2

Операции над отношениями. 2

Слайд 8Пример 1
Для совместимых тернарных отношений a,bM3
a={(a,b,c), (a,b,d), (b,c,e)}
b={ (a,b,d), (b,d,e),

(c,d,e)}
операции объединения, пересечения и разности определяются так:

ab ={(a,b,c), (a,b,d), (b,c,e),

(b,d,e), (c,d,e)};
ab ={ (a,b,d) };
a\b ={(a,b,c), (b,c,e) }

Пример 1	Для совместимых тернарных отношений a,bM3a={(a,b,c), (a,b,d), (b,c,e)}b={ (a,b,d), (b,d,e), (c,d,e)}	операции объединения, пересечения и разности определяются так:ab

Слайд 9Даны множества: A={a,b}, B={a,c}
Составим декартов квадрат множества В:
B2={ (a,a), (a,c),

(c,a), (c,c) }
Пусть универсальное  и бинарное b отношения задаются

следующим образом:
 =AB={ (a,a), (a,c), (b,a), (b,c) }
b={ (a,c), (c,a) }  B2
Дополнение отношения b есть:
b= \b=(AB)\b={ (a,a), (b,a), (b,c) }

Пример 2

Даны множества: A={a,b}, B={a,c}Составим декартов квадрат множества В:B2={ (a,a), (a,c), (c,a), (c,c) }Пусть универсальное  и бинарное

Слайд 10Пример 3
Даны отношения aA2, bA3
a = { (a,b), (c,d),

(a,e) },
b={(a,b,c), (b,d,e)}
Расширенное декартово произведение
отношений a и b определяется

как
ab = { (a,b,a,b,c), (a,b,b,d,e), (c,d,a,b,c), (c,d,b,d,e), (a,e,a,b,c), (a,e,b,d,e) }
Пример 3 Даны отношения aA2, bA3a = { (a,b), (c,d), (a,e) }, b={(a,b,c), (b,d,e)}Расширенное декартово произведениеотношений a

Слайд 11Отношения в совокупности с операциями образуют реляционную алгебру.
Алгебра отношений или

модель (множество с заданным отношением) широко применяются при формализации реальных

объектов, создании информационного обеспечения – разработке информационной базы данных
Основой построения реляционной базы данных является двумерная таблица, каждый столбец которой соответствует домену (или атрибуту, являющемуся частью домена), строка – кортежу значений атрибутов, находящихся в отношении R

Алгебра отношений. 1

Отношения в совокупности с операциями образуют реляционную алгебру.Алгебра отношений или модель (множество с заданным отношением) широко применяются

Слайд 12Алгебра отношений. 2
Носитель реляционной алгебры представляет собой множество отношений

Сигнатура, кроме введенных операций, включает специальные операции над отношениями:
выбор,


проекцию,
соединение
В соответствии с потребностями практики вводятся и другие операции:
обмен позициями;
удвоение позиций;
свертка, композиция.
Алгебра отношений. 2 Носитель реляционной алгебры представляет собой множество отношений Сигнатура, кроме введенных операций, включает специальные операции

Слайд 13Time Out
Преподаватель (П) и студент (С):

П: Знаешь?
С: Знаю!
П: Что

знаешь?
С: Предмет знаю.
П: Какой предмет?
С: Который сдаю.
П: А какой сдаешь?
С:

Ну, это Вы придираетесь.
Ваш, конечно!
Time Out Преподаватель (П) и студент (С):П: Знаешь?С: Знаю!П: Что знаешь?С: Предмет знаю.П: Какой предмет?С: Который сдаю.П:

Слайд 14Пример специальных операций над отношениями. Постановка задания. 1
Таблица определяет

отношение реляционной модели данных:
D1
D2
D3
D4
D5
b
g

Пример специальных операций  над отношениями. Постановка задания. 1 Таблица определяет отношение реляционной модели данных:D1D2D3D4D5bg

Слайд 15Определить результаты выполнения следующих операций:

a1 – выбор по домену

D3 по значению атрибута c2 ;
a2 – проекция по домену

D5 ;
a3 – проекция по доменам D2, D5 ;
a4 – соединение по домену D1 по условию «равно» для двух таблиц b (первые четыре кортежа R5) и g (вторые четыре кортежа R5).

Пример специальных операций над отношениями. Постановка задания. 2

Определить результаты выполнения следующих операций: a1 – выбор по домену D3 по значению атрибута c2 ;a2 –

Слайд 16Пример специальных операций над отношениями. Выбор. 1
a1 – выбор

по домену D3 по значению c2 :
D1
D2
D3
D4
D5
b
g

Пример специальных операций  над отношениями. Выбор. 1 a1 – выбор по домену D3 по значению c2

Слайд 17 Def: операция выбора представляет собой процедуру построения «горизонтального» подмножества

отношения, т.е. подмножества кортежей, обладающих заданным свойством
Пример специальных операций над

отношениями. Выбор. 2
Def: операция выбора представляет собой процедуру построения «горизонтального» подмножества отношения, т.е. подмножества кортежей, обладающих заданным свойствомПример

Слайд 18 Def: операция проекции определяет построение «вертикального» подмножества отношения или

множества кортежей, получаемого выбором одних и исключением других доменов
Проекция

по одному домену определяет совокупность элементов и не является отношением:
a2 – проекция по домену D5:
a2={g1,g2}

Пример специальных операций над отношениями. Проекция. 1

D1

D2

D3

D4

D5

b

g

Def: операция проекции определяет построение «вертикального» подмножества отношения или множества кортежей, получаемого выбором одних и исключением

Слайд 19 Проекция по двум и более доменам является отношением степени

2 и более в зависимости от количества столбцов, по которым

ведется проецирование:

a3 – проекция по доменам D2, D5:

Пример специальных операций над отношениями. Проекция. 2

D1

D2

D3

D4

D5

b

g

Проекция по двум и более доменам является отношением степени 2 и более в зависимости от количества

Слайд 20Пример специальных операций над отношениями. Проекция. 3
Def: проекцией Pr(R2/A)

универсального бинарного отношения R2AB на множество А называется совокупность элементов


Pr(R2/A)={ai | (ai,bi)R2}

Def: проекцией Pr(Rn/Ai1,Ai2,…,Aim) универсального n-арного отношения Rn Ai1Ai2…Ain на множества Ai1,Ai2,…,Aim называется совокупность кортежей (ai1,ai2,…,aim), где aijAij, каждый из которых является частью n-арного вектора из отношения Rn:
Pr(Rn/Ai1,Ai2,…,Aim)={(ai1,ai2,…,aim)| aij Aij , j=1,2,…,m}
Пример специальных операций над отношениями. Проекция. 3 Def: проекцией Pr(R2/A) универсального бинарного отношения R2AB на множество А

Слайд 21Пример специальных операций над отношениями. Соединение. 1
a4 – соединение

по домену D1 по условию «равно» для двух таблиц b

(первые четыре кортежа R5) и g (вторые четыре кортежа R5):
Пример специальных операций  над отношениями. Соединение. 1 a4 – соединение по домену D1 по условию «равно»

Слайд 22 Def: операция соединения по двум таблицам, имеющим общий домен,

позволяет построить одну таблицу, каждая строка которой образуется соединением двух

строк исходных таблиц. Из заданных таблиц выбираются строки, содержащие одно и то же значение из общего домена; общему домену сопоставляется один столбец

Пример специальных операций над отношениями. Соединение. 2

Def: операция соединения по двум таблицам, имеющим общий домен, позволяет построить одну таблицу, каждая строка которой

Слайд 23Выводы
Реляционная алгебра замкнута относительно введенных операций
Операция проецирования на один домен

выводит из носителя, т.е. результат выполнения операции проецирования по одному

домену отношением не является
Проекция на два и более домена является отношением степени два и более, соответственно
Запрос в реляционной базе данных будет выполнен тем быстрее, чем меньше операций над отношениями он содержит
ВыводыРеляционная алгебра замкнута относительно введенных операцийОперация проецирования на один домен выводит из носителя, т.е. результат выполнения операции

Слайд 24Выводы: схема взаимосвязей между понятиями

Выводы: схема взаимосвязей между понятиями

Слайд 25Тест-вопросы. 1
1. Отношением степени n называется:
а) произвольное подмножество
данного множества;
б)

подмножество декартова произведения двух множеств;
в) подмножество декартова произведения любого конечного
количества

множеств;
г) подмножество декартовой степени множества;
д) результат объединения данных множеств;
е) результат пересечения данных множеств.

2. Отношения являются совместимыми:
а) всегда;
б) если они имеют разные степени;
в) если они имеют одинаковые степени;
г) если они бинарные.
3. Операция выбора представляет собой построение:
а) «горизонтального» подмножества отношения;
б) «вертикального» подмножества отношения;
в) «диагонального» подмножества отношения;
г) «бинарного» подмножества отношения;

Тест-вопросы. 11. Отношением степени n называется:а) произвольное подмножество данного множества;б) подмножество декартова произведения двух множеств;в) подмножество декартова

Слайд 26Тест-вопросы. 2

4. Операция проекции представляет собой построение:
а) «горизонтального»
б) «вертикального»


в) «диагонального»
подмножества отношения.
5. Операция проекции по двум доменам представляет

собой построение:
а) «горизонтального» подмножества отношения;
б) «вертикального» подмножества отношения;
в) «диагонального» подмножества отношения;
г) бинарного подмножества отношения.

6. Операция проекции по одному домену представляет собой построение:
а) «горизонтального» подмножества отношения;
б) «вертикального» подмножества отношения;
в) «диагонального» подмножества отношения;
г) бинарного подмножества отношения;
д) некоторого отношения степени n;
е) множества элементов, не являющегося отношением.

Тест-вопросы. 24. Операция проекции представляет собой построение:а) «горизонтального» б) «вертикального» в) «диагонального» подмножества отношения.5. Операция проекции по

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика