Разделы презентаций


Граф, который построил

Содержание

Не говори, чему учили, а скажи, что узнал”. (Пословица)

Слайды и текст этой презентации

Слайд 1Урок информатики 7 класс
Граф, который построил...
Автор: Ерёменко Анна

Вячеславовна, учитель информатики МБОУ СОШ № 4 Им. Нисанова Х.Д.

г. Пролетарска Ростовской области


Урок информатики 7 класс Граф, который построил... Автор: Ерёменко Анна Вячеславовна, учитель информатики МБОУ СОШ № 4

Слайд 2Не говори, чему учили, а скажи, что узнал”.
(Пословица)

Не говори, чему учили, а скажи, что узнал”.									 		(Пословица)

Слайд 3
Граф, который построил...

Граф, который построил...

Слайд 5
Кёнигсберг

Кёнигсберг

Слайд 6
Граф

Граф

Слайд 7
Области применения графов
медицина
химия

Области применения графовмедицинахимия

Слайд 8
математика
история

математикаистория

Слайд 12
ГРАФ - это схема, состоящая из множества точек и множества

линий, которые соединяют между собой все точки или только их

часть.
ГРАФ - это схема, состоящая из множества точек и множества линий, которые соединяют между собой все точки

Слайд 13
Из теории графов:

Точки графа - вершины.
Линия, соединяющая две вершины -

ребро.
Если линия имеет направление - дуга.

Из теории графов:Точки графа - вершины.Линия, соединяющая две вершины - ребро.Если линия имеет направление - дуга.

Слайд 14
вершины
линия
линия
дуга -
точки графа
без стрелки
со стрелкой
ребро

вершины линия линия дуга - точки графабез стрелкисо стрелкойребро -

Слайд 15
число линий, выходящих из вершины графа
степень
вершина графа
называется ЧЁТНОЙ
чётная


нечётная
вершина графа
называется НЕЧЁТНОЙ










число линий, выходящих из вершины графастепень вершина графа называется ЧЁТНОЙчётная нечётная вершина графа называется НЕЧЁТНОЙ

Слайд 16
Мы узнали, что такое:
граф;

вершина, ребро, дуга;

степень вершины: чётная, нечётная;

Мы узнали, что такое:граф;вершина, ребро, дуга;степень вершины: чётная, нечётная;

Слайд 17
Граф можно построить если:
1) все вершины чётные
2) две нечётные вершнины
Граф

нельзя построить:
если более двух нечётных вершин

Граф можно построить если:1) все вершины чётные2) две нечётные вершниныГраф нельзя построить: если более двух нечётных вершин

Слайд 18
результаты
5
0
10
0
4
2
2
3
1
4
6
2



результаты 5010042231462

Слайд 19
Задача о мостах
не
имеет
решения!

Задача о мостахне имеет решения!

Слайд 20
Граф, который построил...

Граф, который построил...

Слайд 21Девиз:
Не говори, чему учили, а скажи, что узнал”.

Девиз:Не говори, чему учили, а скажи, что узнал”.

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика