Разделы презентаций


Центральный процессор.Процесс изготовления.

Содержание

Центра́льный проце́ссор (ЦП; также центральное процессорное устройство — ЦПУ; англ. central processing unit, CPU, дословно — центральное обрабатывающее устройство) — электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ),

Слайды и текст этой презентации

Слайд 1Центральный процессор.
Выполнил: Рябков М. А.
423 группы.

http://prezentacija.biz/

Центральный процессор.Выполнил: Рябков М. А.423 группы.http://prezentacija.biz/

Слайд 2 Центра́льный проце́ссор (ЦП; также центральное процессорное устройство — ЦПУ; англ.

central processing unit, CPU, дословно — центральное обрабатывающее устройство) —

электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

Центра́льный проце́ссор (ЦП; также центральное процессорное устройство — ЦПУ; англ. central processing unit, CPU, дословно — центральное

Слайд 3 История развития производства процессоров полностью соответствует истории развития технологии производства

прочих электронных компонентов и схем.
Первым этапом, затронувшим период с 1940-х

по конец 1950-х годов, было создание процессоров с использованием электромеханических реле, ферритовых сердечников (устройств памяти) и вакуумных ламп. Они устанавливались в специальные разъёмы на модулях, собранных в стойки. Большое количество таких стоек, соединённых проводниками, в сумме представляли процессор. Отличительной особенностью была низкая надёжность, низкое быстродействие и большое тепловыделение.
Вторым этапом, с середины 1950-х до середины 1960-х, стало внедрение транзисторов. Транзисторы монтировались уже на близкие к современным по виду платам, устанавливаемым в стойки. Как и ранее, в среднем процессор состоял из нескольких таких стоек. Возросло быстродействие, повысилась надёжность, уменьшилось энергопотребление.

История возникновения центральный процессор.

История развития производства процессоров полностью соответствует истории развития технологии производства прочих электронных компонентов и схем.	Первым этапом, затронувшим

Слайд 4 Третьим этапом, наступившим в середине 1960-х годов, стало использование микросхем.

Первоначально использовались микросхемы низкой степени интеграции, содержащие простые транзисторные и

резисторные сборки, затем, по мере развития технологии, стали использоваться микросхемы, реализующие отдельные элементы цифровой схемотехники (сначала элементарные ключи и логические элементы, затем более сложные элементы — элементарные регистры, счётчики, сумматоры), позднее появились микросхемы, содержащие функциональные блоки процессора — микропрограммное устройство,арифметическо-логическое устройство, регистры, устройства работы с шинами данных и команд.
Четвёртым этапом, в начале 1970-х годов, стало создание, благодаря прорыву в технологии создания БИС и СБИС (больших и сверхбольших интегральных схем, соответственно), микропроцессора — микросхемы, на кристалле которой физически были расположены все основные элементы и блоки процессора. Фирма Intel в 1971 году создала первый в мире 4-разрядный микропроцессор 4004, предназначенный для использования в микрокалькуляторах. Постепенно практически все процессоры стали выпускаться в формате микропроцессоров.
Третьим этапом, наступившим в середине 1960-х годов, стало использование микросхем. Первоначально использовались микросхемы низкой степени интеграции, содержащие

Слайд 5 В перспективе изменится материальная часть процессоров ввиду того, что технологический

процесс достигнет физических пределов производства. Имеются различные направления.
• Оптические компьютеры —

в которых вместо электрических сигналов обработке подвергаются потоки света (фотоны, а не электроны).
• Квантовые компьютеры, работа которых всецело базируется на квантовых эффектах. В настоящее время ведутся работы над созданием рабочих версий квантовых процессоров.
• Молекулярные компьютеры — вычислительные системы, использующие вычислительные возможности молекул (преимущественно, органических). Молекулярными компьютерами используется идея вычислительных возможностей расположения атомов в пространстве.

Перспективы центральный процессор.

В перспективе изменится материальная часть процессоров ввиду того, что технологический процесс достигнет физических пределов производства. Имеются различные

Слайд 6 Большинство современных процессоров для персональных компьютеров в общем основаны на

той или иной версии циклического процесса последовательной обработки данных, изобретённого[источник

не указан 1160 дней] Джоном фон Нейманом.
Дж. фон Нейман придумал[источник не указан 1160 дней] схему постройки компьютера в 1946 году.
Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти.
В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов.

Архитектура фон Неймана.

Большинство современных процессоров для персональных компьютеров в общем основаны на той или иной версии циклического процесса последовательной

Слайд 71.Процессор выставляет число, хранящееся в регистре счётчика команд, на шину

адреса и отдаёт памяти команду чтения.
2.Выставленное число является для памяти

адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных и сообщает о готовности.
3.Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её.
4.Если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды.

Этапы цикла выполнения:

1.Процессор выставляет число, хранящееся в регистре счётчика команд, на шину адреса и отдаёт памяти команду чтения.2.Выставленное число

Слайд 8 Конвейерная архитектура (англ. pipelining) была введена в центральный процессор с

целью повышения быстродействия. Обычно для выполнения каждой команды требуется осуществить

некоторое количество однотипных операций, например: выборка команды из ОЗУ, дешифровка команды, адресация операнда в ОЗУ, выборка операнда из ОЗУ, выполнение команды, запись результата в ОЗУ. Каждую из этих операций сопоставляют одной ступени конвейера. Например, конвейер микропроцессора с архитектурой MIPS-I содержит четыре стадии:
• получение и декодирование инструкции,
• адресация и выборка операнда из ОЗУ,
• выполнение арифметических операций,
• сохранение результата операции.

Конвейерная архитектура.

Конвейерная архитектура (англ. pipelining) была введена в центральный процессор с целью повышения быстродействия. Обычно для выполнения каждой

Слайд 9 Способность выполнения нескольких машинных инструкций за один такт процессора путем

увеличения числа исполнительных устройств. Появление этой технологии привело к существенному

увеличению производительности, в то же время существует определенный предел роста числа исполнительных устройств, при превышении которого производительность практически перестает расти, а исполнительные устройства простаивают. Частичным решением этой проблемы являются, например, технология Hyper-threading.

Суперскалярная архитектура.

Способность выполнения нескольких машинных инструкций за один такт процессора путем увеличения числа исполнительных устройств. Появление этой технологии

Слайд 10 Complex instruction set computer — вычисления со сложным набором команд.

Процессорная архитектура, основанная на усложнённом наборе команд. Типичными представителями CISC

являются микропроцессоры семейства x86 (хотя уже много лет эти процессоры являются CISC только по внешней системе команд: в начале процесса исполнения сложные команды разбиваются на более простые микрооперации (МОП), исполняемые RISC-ядром).

CISC – процессоры.

Complex instruction set computer — вычисления со сложным набором команд. Процессорная архитектура, основанная на усложнённом наборе команд.

Слайд 11 Reduced instruction set computer — вычисления с упрощённым набором команд

(в литературе слово reduced нередко ошибочно переводят как «сокращённый»). Архитектура

процессоров, построенная на основе упрощённого набора команд, характеризуется наличием команд фиксированной длины, большого количества регистров, операций типа регистр-регистр, а также отсутствием косвенной адресации. Концепция RISC разработана Джоном Коком из IBM Research, название придумано Дэвидом Паттерсоном (David Patterson).

RISC - процессоры.

Reduced instruction set computer — вычисления с упрощённым набором команд (в литературе слово reduced нередко ошибочно переводят

Слайд 12 Minimum instruction set computer — вычисления с минимальным набором команд.

Дальнейшее развитие идей команды Чака Мура, который полагает, что принцип

простоты, изначальный для RISC-процессоров, слишком быстро отошёл на задний план. В пылу борьбы за максимальное быстродействие, RISC догнал и обогнал многие CISC процессоры по сложности. Архитектура MISC строится на стековой вычислительной модели с ограниченным числом команд (примерно 20-30 команд).

MISC - процессоры.

Minimum instruction set computer — вычисления с минимальным набором команд. Дальнейшее развитие идей команды Чака Мура, который

Слайд 13 Very long instruction word — сверхдлинное командное слово. Архитектура процессоров

с явно выраженным параллелизмом вычислений, заложенным в систему команд процессора.

Являются основой для архитектуры EPIC. Ключевым отличием от суперскалярных CISC-процессоров является то, что для них загрузкой исполнительных устройств занимается часть процессора (планировщик), на что отводится достаточно малое время, в то время как загрузкой вычислительных устройств для VLIW-процессора занимается компилятор, на что отводится существенно больше времени (качество загрузки и, соответственно, производительность теоретически должны быть выше). Примером VLIW-процессора является Intel Itanium.

VLIW – процессоры.

Very long instruction word — сверхдлинное командное слово. Архитектура процессоров с явно выраженным параллелизмом вычислений, заложенным в

Слайд 14Информация в этой статье или некоторых её разделах устарела.
Вы можете

помочь проекту, обновив её и убрав после этого данный шаблон.
Содержат

несколько процессорных ядер в одном корпусе (на одном или нескольких кристаллах).
Процессоры, предназначенные для работы одной копии операционной системы на нескольких ядрах, представляют собой высокоинтегрированную реализацию мультипроцессорности.
Первым многоядерным микропроцессором стал POWER4 от IBM, появившийся в 2001 году и имевший два ядра.
В октябре 2004 года Sun Microsystems выпустила двухъядерный процессор UltraSPARC IV, который состоял из двух модифицированных ядер UltraSPARC III. В начале 2005 был создан двухъядерный UltraSPARC IV+.
14 ноября 2005 года Sun выпустила восьмиядерный UltraSPARC T1, каждое ядро которого выполняло 4 потока.

Многоядерные процессоры.

Информация в этой статье или некоторых её разделах устарела.Вы можете помочь проекту, обновив её и убрав после

Слайд 15В ноябре 2006 года вышел первый четырёхъядерный процессор Intel Core

2 Quad на ядре Kentsfield, представляющий собой сборку из двух

кристаллов Conroe в одном корпусе. Потомком этого процессора стал Intel Core 2 Quad на ядре Yorkfield (45 нм), архитектурно схожем с Kentsfield но имеющем больший объём кэша и рабочие частоты.
В октябре 2007 года в продаже появились восьмиядерные UltraSPARC T2, каждое ядро выполняло 8 потоков.
10 сентября 2007 года были выпущены в продажу нативные (в виде одного кристалла) четырёхъядерные процессоры для серверов AMD Opteron, имевшие в процессе разработки кодовое название AMD Opteron Barcelona. 19 ноября 2007 года вышел в продажу четырёхъядерный процессор для домашних компьютеров AMD Phenom. Эти процессоры реализуют новую микроархитектуру K8L (K10).
К 1—2 кварталу 2009 года обе компании обновили свои линейки четырёхъядерных процессоров. Intel представила семейство Core i7, состоящее из трёх моделей, работающих на разных частотах. Основными изюминками данного процессора является использование трёхканального контроллера памяти (типа DDR3) и технологии эмулирования восьми ядер (полезно для некоторых специфических задач).
В ноябре 2006 года вышел первый четырёхъядерный процессор Intel Core 2 Quad на ядре Kentsfield, представляющий собой

Слайд 16Архитектура фон Неймана обладает тем недостатком, что она последовательная. Какой

бы огромный массив данных ни требовалось обработать, каждый его байт

должен будет пройти через центральный процессор, даже если над всеми байтами требуется провести одну и ту же операцию. Этот эффект называется узким горлышком фон Неймана.
Для преодоления этого недостатка предлагались и предлагаются архитектуры процессоров, которые называются параллельными. Параллельные процессоры используются в суперкомпьютерах.
Возможными вариантами параллельной архитектуры могут служить (по классификации Флинна):
• SISD — один поток команд, один поток данных;
• SIMD — один поток команд, много потоков данных;
• MISD — много потоков команд, один поток данных;
• MIMD — много потоков команд, много потоков данных.

Параллельная архитектура.

Архитектура фон Неймана обладает тем недостатком, что она последовательная. Какой бы огромный массив данных ни требовалось обработать,

Слайд 17 Первоначально перед разработчиками ставится техническое задание, исходя из которого принимается

решение о том, какова будет архитектура будущего процессора, его внутреннее

устройство, технология изготовления. Перед различными группами ставится задача разработки соответствующих функциональных блоков процессора, обеспечения их взаимодействия, электромагнитной совместимости. В связи с тем, что процессор фактически является цифровым автоматом, полностью отвечающим принципам булевой алгебры, с помощью специализированного программного обеспечения, работающего на другом компьютере, строится виртуальная модель будущего процессора. На ней проводится тестирование процессора, исполнение элементарных команд, значительных объёмов кода, отрабатывается взаимодействие различных блоков устройства, ведётся оптимизация, ищутся неизбежные при проекте такого уровня ошибки. Затем начинается этап совместной работы инженеров-схемотехников и инженеров-технологов, которые с помощью специализированного программного обеспечения преобразуют электрическую схему, содержащую архитектуру процессора, в топологию кристалла.

Процесс изготовления.

Первоначально перед разработчиками ставится техническое задание, исходя из которого принимается решение о том, какова будет архитектура будущего

Слайд 18Современные системы автоматического проектирования позволяют, в общем случае, из электрической

схемы напрямую получить пакет трафаретов для создания масок. На этом

этапе технологи пытаются реализовать технические решения, заложенные схемотехниками, с учётом имеющейся технологии. Этот этап является одним из самых долгих и сложных в разработке и иногда требует компромиссов со стороны схемотехников по отказу от некоторых архитектурных решений.
Одновременно на подложке формируется порядка сотни процессорных кристаллов. В результате появляется сложная многослойная структура, содержащая от сотен тысяч до миллиардов транзисторов. В зависимости от подключения транзистор работает в микросхеме как транзистор, резистор, диод или конденсатор. Создание этих элементов на микросхеме отдельно, в общем случае, не выгодно. После окончания процедуры литографии подложка распиливается на элементарные кристаллы. К сформированным на них контактным площадкам (из золота) припаиваются тонкие золотые проводники, являющиеся переходниками к контактным площадкам корпуса микросхемы. Далее, в общем случае, крепится теплоотвод кристалла и крышка микросхемы.
Современные системы автоматического проектирования позволяют, в общем случае, из электрической схемы напрямую получить пакет трафаретов для создания

Слайд 19Следует отметить, что параллельно с разработкой универсальных микропроцессоров, разрабатываются наборы

периферийных схем ЭВМ, которые будут использоваться с микропроцессором и на

основе которых создаются материнские платы. Разработка микропроцессорного набора (чипсета, англ. chipset) представляет задачу, не менее сложную, чем создание собственно микросхемы микропроцессора.
В последние несколько лет наметилась тенденция переноса части компонентов чипсета (контроллер памяти, контроллер шины PCI Express) в состав процессора (подробнее см.: Система на кристалле).

Следует отметить, что параллельно с разработкой универсальных микропроцессоров, разрабатываются наборы периферийных схем ЭВМ, которые будут использоваться с

Слайд 20 Центральный процессор (ЦП) – функционально-законченное программно - управляемое устройство обработки

информации, выполненное на одной или нескольких СБИС. . Процессор в

определённой последовательности выбирает из памяти инструкции и исполняет их.
В многопроцессорной системе функции центрального процессора распределяются между несколькими обычно идентичными процессорами для повышения общей производительности системы, а один из них назначается главным.Характеристика процессоров, используемых в современных ПК типа IBM PC, процессоры для этих ПК выпускают многие фирмы, но законодателем моды здесь является фирма Intel. Ее последней разработкой является процессор Intel Core, выпуск которого начат в начале 2006 г.
Фирма Intel поставляет упрощенные варианты процессоров Pentium 4 под названием Celeron, который в два раза дешевле базового варианта процессора. Но следует отметить, что последние модели процессоров Celeron ни в чем не уступают «старшему брату» и даже в некоторых случаях превосходят его.
Процессоры имеют возможность снижения энергопотребления в нерабочем режиме (аналогичные средства появились в процессорах Pentium начиная только со 2-го поколения).

Заключение.

Центральный процессор (ЦП) – функционально-законченное программно - управляемое устройство обработки информации, выполненное на одной или нескольких СБИС.

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика