Лаплас говорил, что изобретение логарифмов, «сократив труд астронома, удвоило его жизнь»
Решающий шаг был сделан в средневековой Европе. Потребность в сложных расчётах в XVI веке быстро росла, и значительная часть трудностей была связана с умножением и делением многозначных чисел, а также извлечением корней. В конце века нескольким математикам, почти одновременно, пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая
будет исходной.
Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание, упростятся также возведение в степень и извлечение корня.
Судя по документам, техникой логарифмирования Непер владел уже к 1594 году. Непосредственной целью её разработки было облегчить Неперу сложные астрологические расчёты именно поэтому в таблицы были включены только логарифмы тригонометрических функций.
Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение; например, логарифм синуса он определил следующим образом
Спустя несколько лет после книги Непера появились логарифмические таблицы, использующие более близкое к современному понимание логарифма. Лондонский профессор Генри Бригс издал 14-значные таблицы десятичных логарифмов (1617), причём не для тригонометрических функций, а для произвольных целых чисел до 1000 (7 лет спустя Бригс увеличил количество чисел до 20000). В 1619 году лондонский учитель математики Джон Спайделл переиздал логарифмические таблицы Непера, исправленные и дополненные так, что они фактически стали таблицами натуральных логарифмов. У Спайделла тоже были и логарифмы самих чисел до 1000 (причём логарифм единицы, как и у Бригса, был равен нулю) — хотя масштабирование до целых чисел Спайделл сохранил.
меняется по логарифмическому закону. В 1668 году немецкий математик Николас Меркатор (Кауфман) открыл и опубликовал в своей книге Logarithmotechnia разложение логарифма в бесконечный ряд. По мнению многих историков, появление логарифмов оказало сильное влияние на многие математические концепции, в том числе:
Формирование и признание общего понятия иррациональных и трансцендентных чисел.
Появление показательной функции и общего понятия числовой функции, числа Эйлера, развитие теории разностных уравнений.
Начало работы с бесконечными рядами.
Общие методы решения дифференциальных уравнений различных типов.
Существенное развитие теории численных методов, требуемых для вычисления точных логарифмических таблиц.
Краткие обозначения наиболее употребительных видов логарифма —
для десятичного и натурального — появились намного раньше сразу у нескольких авторов и закрепились окончательно также к концу XIX века
Близкое к современному понимание логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса (1685) и Иоганна Бернулли(1694), а окончательно было узаконено Эйлером. В книге «Введение в анализ бесконечных» (1748) Эйлер дал современные определения как показательной, так и логарифмической функций, привёл разложение их в степенные ряды, особо отметил роль натурального логарифма. Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.
Рихтер предложил для оценки силы землетрясения (в его эпицентре) десятичный логарифм перемещения (в микрометрах) иглы стандартного сейсмографа Вуда-Андерсона
где A — амплитуда колебаний земли (в микрометрах), T — период волны (в секундах), и Q — поправка, зависящая от расстояния до эпицентра D и глубины очага землетрясения h.
Вычисляется как десятичный логарифм отношения потока излучения падающего на объект, к потоку излучения прошедшего через него (отразившегося от него)
К примеру D=4 означает, что свет был ослаблен в 104=10 000 раз, т. е. для человека это полностью чёрный объект, а D=0 означает, что свет прошёл (отразился) полностью.
Звезды первой величины, второй и третьей и т.п. Последовательность видимых звездных величин, которые воспринимались глазом, представляет собой арифметическую прогрессию. Но физическая их яркость изменяется по иному закону:
Яркость звезд составляет геометрическую прогрессию со знаменателем 2,5 легко понять, что «величина» звезды представляют собой логарифм её физической яркости.
Оценивая яркость звезд, астроном оценивает таблицей логарифмов составленной при основании 2,5.
Аналогично оценивается и громкость шума. Вредное влияние промышленных шумов на здоровье рабочих и производстве труда.
Мы слышим звук во время одновременного действия нескольких тонов, частоты которых находятся в простых целочисленных отношениях. Сами звуки различаются по высоте, которая зависит от частоты колебаний струны. Для того чтобы понять, как человек ощущает звук, надо начать с описания уха
1 — наружный слуховой проход; 2 — барабанная перепонка; 3 — полость среднего уха (барабанная полость); 4 — молоточек; 5 — наковальня; 6 — стремечко; 7 — полукружные каналы; 8 — преддверие; 9 — улитка; 10 — овальное окно; 11 — евстахиева труба.
У логарифмической спирали все время выдерживается постоянный угол относительно оси (раковина улитки)
Первым ученым, открывшим эту удивительную кривую, был Рене Декарт (1596—1650)
ЗА ЧТО ЖЕ ОН ОТВЕЧАЕТ?
Остается неясным,
логарифм по какому
основанию — 10 или
2,512… — использовал
Лев Ландау для
определения уровня
гениальности физиков-
теоретиков. Несомненно
лишь одно: для этих
сугубо эмоциональных,
субъективных оценок
он использовал логарифмическую шкалу.
Однако
спрос на хронометры со
встроенным вычислительным
устройством среди следящих за
модой людей заставил
производителей часов выпустить
модели с встроенной логарифмической линейкой выполненной в виде вращающихся колец со шкалами вокруг циферблата.
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть