Так как это больше нехватки 3, то на одну вторую предположение умножить нельзя. Ахмес видит, что одна четвертая и одна восьмая первоначального результата дают точно те 3 единицы, которых не хватало. Ахмес убедился, что первоначальное предположение для кучи надо помножить на 2+1/4+1/8
В третьем столбце выписаны: 1/7 часть искомой кучи, удвоенное это число и учетверенное. Сумма этих трех чисел,, есть произведение первоначального предположения на 2+1/4+1/8 .
Итак, куча равна 16+1/2+1/8 .
В последнем столбце Ахмес делает проверку, в сумме получается 19, и решение заканчивается обычным для автора заключением: «Будет хорошо».
В Древнем Египте и Вавилоне использовался метод ложного положения («фальшивое правило»)
Подобные задачи мы теперь решаем уравнениями первой степени.
В папирусе Ахмеса 15 задач решается этим методом. Решение первой из них позволяет понять, как рассуждал автор.
Смысл решения Ахмеса легко понять.
Делается предположение, что. куча есть 7; тогда одна седьмая ее часть есть 1. Это записано в первом столбце.
Во втором столбце записано, что при предположении х=7 куча и ее одна седьмая часть дали бы 8 вместо 19. Удвоение предположения дает 16. Автор, в уме очевидно, прикидывает, что дальше удваивать предположение нельзя, так как тогда получится больше 19. Для получения в сумме 19 первоначальное предположение надо умножить на 2 с некоторым добавлением, так как для получения 19, не хватает еще 3. Ахмес находит одну вторую от 8, получает 4.
Из западноевропейских арифметических положений оно перешло в русские арифметические рукописи XVIII в., в «Арифметику» Леонтия Филипповича Магницкого и в учебники XVIII и даже начала XIX вв. Как и арабы, русские ввели в обращение только правило двух ложных положений, о величестве и могуществе которого имели очень большое представление.
В настоящее время это правило практически не используется и представляет интерес только для историков математики.
Правило распространялось и использовалось в мире на протяжении тридцати веков. Многие ученые из разных стран приняли в этом участие: древнекитайские, египетские, индийские, арабские, европейские, русские.
Задача 1. Найти такое число, что если к нему добавить третью часть и от полученной суммы отнять её шестую часть, то будет 100.
Решение:
I возможность (результат двух вычислений оказывается больше данного числа)
1. Предположим, что неизвестное число есть 144.
Проделаем с ним описанные в задаче операции:
1/3• 144 = 48, 144 + 48 = 192
1/6 • 192 = 32, 192 – 32 = 160
160 ≠ 100
Вывод: не угадали, результат вычисленный больше 100.
2. Предположим, что неизвестное число есть 108.
Проделаем с ним описанные в задаче операции:
1/3 • 108 = 36, 108 + 36 = 144
1/6 • 144 = 24, 144 – 24 = 120
120 ≠ 100
Вывод: не угадали, результат вычислений больше 100.
3. По результатам двух неудачных попыток можно найти искомое число.
Вычисляем, на сколько мы ошиблись:
1 случай: 2 случай:
160 – 100 = 60 120 – 100 = 20
Перемножим числа:
108 • 60 = 6480
144 • 20 = 2880
Разделим разность произведений на разность ошибок:
6480 – 2880 = 3600
60 – 20 = 40
3600 : 40 = 90
Значит, искомое число равно 90.
II возможность (результат одного из вычислений больше, а другого – меньше данного)
Предположим, что это число есть 72.
Проделаем с ним описанные в задаче операции:
1/3 • 72 = 24 72 + 24 = 96
1/6 • 96 = 16 96 – 16 = 80
80 ≠ 100
Не угадали, результат вычислений меньше 100.
Предположим, что это число есть 99.
Проделаем с ним описанные в задаче операции:
1/3• 99 = 33 99 + 33 = 132
1/6 • 132 = 22 132 – 22 = 110
Не угадали, результат вычислений больше 100.
Вычисляем, насколько мы ошиблись:
100 – 80 = 20 110 – 100 = 10
Перемножим числа:
72 • 10 = 720 99 • 20 = 1980
720/30+1980/30=2700/30
Получили 90
III возможность (результат двух вычислений оказывается больше данного числа)
Предположим, что это число есть 81.
Проделаем с ним описанные в задаче операции:
1/3 • 81 = 27 81 + 27 = 108
1/6• 108 = 18 108 – 18 = 90
Не угадали, результат вычислений меньше 100.
Предположим, что это число есть 72.
Проделаем с ним описанные в задаче операции:
1/3• 72 = 24 72 + 24 = 96
1/6• 96 = 16 96 – 16 = 80
Не угадали, результат вычислений меньше 100.
Вычислим, насколько мы ошиблись:
90 – 100 = -10 80 – 100 = -20
81 • (-20) = -1620 72 • (-10) = -720
Разность произведений разделим на разность ошибок:
-900/-10 = 90
Получили 90.
Ответ: искомое число равно 90
Задача 1. Найти такое число, что если к нему добавить третью часть и от полученной суммы отнять её шестую часть, то будет 100.
Решение:
Пусть x – искомое число.
Тогда его треть равна х/3.
Сумма числа с его третей частью равна x +х/3 =4х/3 . После вычитания из полученной суммы
шестой части получим
4х/3-(1/6)*(4х/3)= 4х/3-2х/9=10х/9,
что по условию задачи равно 100.
Решаем уравнение, получаем x = 90.
Значит, искомое число равно 90.
Ответ: искомое число равно 90
Проведем сравнительный анализ решений задач из «Арифметики» Л. Ф. Магницкого методом двух ложных положений и современным способом.
Задача 4. Два человека хотят купить корову. Говорит первый второму: «Если ты дашь мне твоих денег, то я один смогу заплатить цену». А второй отвечает первому: «Дай мне твоих денег, тогда и я заплачу за нее цену». Сколько у каждого из них денег, если корова стоит 24 рубля?
Решение:
Пусть x – количество денег у первого человека, а y – количество денег у второго человека. Составим систему уравнений:
x+2/3y=24
3/4x+y=24
Выразим х из первого уравнения и подставим во второе, получим
х=24-2/3у
3/4(24-2/3у)+у=24
решаем
18 – 1/2y +y = 24
1/2y = 6
y = 12
Следовательно, у второго человека было 12 рублей, а у первого человека было 24 – 8 = 16 рублей.
Ответ: у первого было 16 рублей, а у второго – 12
Вывод: для решения данной задачи потребовались умения: составить и решить систему двух линейных уравнений с двумя неизвестными с дробными коэффициентами. Это уровень восьмого и девятого классов современный школы.
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть