Разделы презентаций


Тригонометрические функции

Содержание

Тригонометрические функции острого угла есть отношения различных пар сторон прямоугольного треугольника  1) Синус - отношение противолежащего катета к гипотенузе:  sin A = a / c .   2) Косинус - отношение прилежащего

Слайды и текст этой презентации

Слайд 1 Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №30» Тригонометрические функции
Подготовила:
Шунайлова М., ученица 11

«Д»
Руководители:
Крагель Т.П., Гремяченская Т.В..
2006

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №30»

Слайд 2
Тригонометрические функции острого угла есть отношения различных пар сторон

прямоугольного треугольника  
1) Синус - отношение противолежащего катета к гипотенузе:  sin

A = a / c .  
2) Косинус - отношение прилежащего катета к гипотенузе:  cos A = b / c .
3) Тангенс - отношение противолежащего катета к прилежащему:  tg A = a / b .
4) Котангенс - отношение прилежащего катета к противолежащему: ctg A = b / a .
5) Секанс - отношение гипотенузы к прилежащему катету:  sec A = c / b .
6) Косеканс - отношение гипотенузы к противолежащему катету: cosec A =
= c / a .
Аналогично записываются формулы для другого острого угла B  
Тригонометрические функции острого угла есть отношения различных пар сторон прямоугольного треугольника  1) Синус - отношение противолежащего

Слайд 3
П р и м е р : 
Прямоугольный треугольник

ABC  ( рис.2 ) имеет катеты:
                         a = 4,  b

= 3.
Найти синус, косинус и тангенс угла A.
 
Р е ш е н и е .  Во-первых, найдём гипотенузу, используя теорему Пифагора:
 
                         c 2 = a2 + b 2 ,
Согласно вышеприведенным формулам имеем: sin A = a / c = 4 / 5 
cos A = b / c = 3 / 5 
tg A = a / b = 4 / 3 




П р и м е р :  Прямоугольный треугольник ABC  ( рис.2 ) имеет катеты:                         a

Слайд 4
Для некоторых углов можно записать

точные значения их тригонометрических функций. Наиболее важные случаи приведены в

таблице:

Углы 0° и 90°, не являются острыми в прямоугольном треугольнике, однако при расширении понятия тригонометрических функций эти углы также рассматриваются. Символ    в таблице означает, что абсолютное значение функции неограниченно возрастает, если угол приближается к указанному значению.

Для некоторых углов можно записать точные значения их тригонометрических функций. Наиболее важные случаи

Слайд 5Связь тригонометрических функций острого угла





Связь тригонометрических функций острого угла

Слайд 6Тригонометрические функции двойного угла:
sin 2x = 2 sinx cosx
cos

2x = cos2x - sin2x
tg 2x = 2 tg

x /(1- tg2x)
ctg 2x = ctg2x-1/(2 ctg x)
Тригонометрические функции двойного угла:sin 2x = 2 sinx cosx cos 2x = cos2x - sin2x tg 2x

Слайд 7Тригонометрические функции половинного угла






Часто бывают полезны формулы, выражающие степени sin

и cos простого аргумента через sin и cos кратного, например:

Формулы

для cos2x и sin2x можно использовать для нахождения значений Т. ф. половинного аргумента
Тригонометрические функции половинного углаЧасто бывают полезны формулы, выражающие степени sin и cos простого аргумента через sin и

Слайд 8Тригонометрические функции суммы углов
sin(x+y)= sin x cos y + cos

x sin y
sin(x-y)= sin x cos y - cos

x sin y
cos(x+y)= cos x cos y - sin x sin y
cos(x-y)= cos x cos y + sin x sin y





Тригонометрические функции суммы угловsin(x+y)= sin x cos y + cos x sin y sin(x-y)= sin x cos

Слайд 9
Для больших значений аргумента можно пользоваться так называемыми формулами

приведения, которые позволяют выразить Т. ф. любого аргумента через
Т. ф.

аргумента x, что упрощает составление таблиц Т. ф. и пользование ими, а также построение графиков. Эти формулы имеют вид:


в первых трёх формулах n может быть любым целым числом, причём верхний знак соответствует значению n = 2k, а нижний - значению n = 2k + 1; в последних - n может быть только нечётным числом, причём верхний знак берётся при n = 4k + 1, а нижний при n = 4k - 1.

Для больших значений аргумента можно пользоваться так называемыми формулами приведения, которые позволяют выразить Т. ф. любого

Слайд 10
Важнейшими тригонометрическими формулами являются формулы сложения, выражающие Т. ф.

суммы или разности значений аргумента через Т. ф. этих значений:









знаки

в левой и правой частях всех формул согласованы, то есть верхнему (нижнему) знаку слева соответствует верхний (нижний) знак справа. Из них, в частности, получаются формулы для Т. ф. кратных аргументов, например:





Важнейшими тригонометрическими формулами являются формулы сложения, выражающие Т. ф. суммы или разности значений аргумента через Т.

Слайд 11Производные всех Тригонометрических функций выражаются через Тригонометрические функции





Производные всех Тригонометрических функций выражаются через Тригонометрические функции

Слайд 12 График функции y = sinx имеет вид:

График функции y = sinx имеет вид:

Слайд 13 График функции y = cosx имеет вид:

График функции y = cosx имеет вид:

Слайд 14 График функции y = tgx имеет вид:

График функции y = tgx имеет вид:

Слайд 15 График функции y = ctgx имеет вид:  

График функции y = ctgx имеет вид:  

Слайд 16 История возникновения тригонометрических функций

Т. ф. возникли впервые в связи

с исследованиями в астрономии и геометрии. Соотношения отрезков в треугольнике

и окружности, являющиеся по существу Т. ф., встречаются уже в 3 в. до н. э. в работах математиков Древней Греции - Евклида, Архимеда, Аполлония Пергского и др. Однако эти соотношения не являются у них самостоятельным объектом исследования, так что Т. ф. как таковые ими не изучались. Т. ф. рассматривались первоначально как отрезки и в такой форме применялись Аристархом (конец 4 - 2-я половина 3 вв. до н. э.)

История возникновения тригонометрических функцийТ. ф. возникли впервые в связи с исследованиями в астрономии и геометрии. Соотношения

Слайд 17
Гиппархом (2 в. до н. э.), Менелаем (1 в.

н. э.) и Птолемеем (2 в. н. э.) при решении

сферических треугольников. Птолемей составил первую таблицу хорд для острых углов через 30' с точностью до 10-6. Разложение Т. ф. в степенные ряды получено И. Ньютоном (1669). В современную форму теорию Т. ф. привёл Л. Эйлер (18 в.). Ему принадлежат определение Т. ф. для действительного и комплексного аргументов, принятая ныне символика, установление связи с показательной функцией, ортогональности системы синусов и косинусов
Гиппархом (2 в. до н. э.), Менелаем (1 в. н. э.) и Птолемеем (2 в. н.

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика