Разделы презентаций


2. Кинематический анализ.PPT

Содержание

К и н е м а т и ч е с к и й а н а л и з – это исследование расчётной схемы сооружения (системы), выполняемое до начала

Слайды и текст этой презентации

Слайд 1
КИНЕМАТИЧЕСКИЙ
АНАЛИЗ СООРУЖЕНИЙ

СТРОИТЕЛЬНАЯ МЕХАНИКА.
Часть I

С
ВГ

КИНЕМАТИЧЕСКИЙ АНАЛИЗ СООРУЖЕНИЙ СТРОИТЕЛЬНАЯ МЕХАНИКА.Часть IСВГ

Слайд 2К и н е м а т и ч е

с к и й а н а л и

з –
это исследование расчётной схемы
сооружения (системы), выполняемое
до начала расчёта с целью определения кинематического качества системы (геометрической неизменяемости, мгновенной изменяемости или
геометрической изменяемости), а в случае
геометрической неизменяемости системы – также для выявления её статической определимости или неопределимости.


К и н е м а т и ч е с к и й  а н

Слайд 3Основные понятия кинематического анализа
Д и с к –


часть системы (один или несколько
соединённых друг с другом элементов),


форма и размеры которой могут изменяться
только вследствие деформации материала.

С в я з и (механические) –
ограничения на перемещения
(линейные и/или угловые) точек или сечений элементов системы, а также устройства, технически реализующие эти ограничения.

С т е п е н и с в о б о д ы –
независимые геометрические параметры,
полностью определяющие положение
всех точек диска или системы в целом
при их возможных перемещениях.


Основные понятия кинематического анализа  Д и с к – часть системы (один или несколько соединённых друг

Слайд 4Д и с к и
– а, б, в, г, д

– диски из одного элемента
(а, б, в – стержни

с прямолинейной, криволинейной и ломанной в плоскости
или в пространстве осью; г – диск-пластинка; д – диск-оболочка);
– е, ж, з, и, к – диски из нескольких элементов
(е, ж, з – из однотипных элементов – стержней, плоские (е, ж) и пространственный (з);
и, к – комбинированные пластинчато- и оболочечно-стержневые, пространственные).


Д и с к и– а, б, в, г, д – диски из одного элемента (а, б,

Слайд 5Классификация связей
– по области расположения
дискретные (в отдельных точках или сечениях)
континуальные

(распределённые по объёму,

поверхности или линии)


– по соединяемым дискам

внутренние
внешние


– по числу ограничиваемых
перемещений

простые (линейные и угловые)
сложные


– по физическим свойствам

жёсткие (недеформируемые)
податливые (деформируемые)


– по кинематическому
признаку

необходимые
избыточные (лишние и ложные)



Классификация связей– по области расположениядискретные (в отдельных точках или сечениях)континуальные (распределённые по объёму,

Слайд 6Типы связей плоских систем



















Типы связей плоских систем

Слайд 7Типы связей плоских систем (окончание)






Типы связей плоских систем (окончание)

Слайд 8
Степени свободы

Степени свободы

Слайд 9Системы геометрически неизменяемые, изменяемые и мгновенно изменяемые
Геометрически неизменяемая система (ГНС)


это система, перемещения в которой могут возникать
только вследствие деформации

её элементов.

Геометрически изменяемой
называется система (ГИС), в которой возможны
конечные перемещения без деформации элементов.

Мгновенно изменяемой
называется система (МИС), в которой
могут возникать бесконечно малые перемещения
без деформации её элементов.


Системы геометрически неизменяемые, изменяемые  и мгновенно изменяемые Геометрически неизменяемая система (ГНС) – это система, перемещения в

Слайд 10Алгоритм кинематического анализа

Алгоритм кинематического анализа

Слайд 11Этапы кинематического анализа
1) количественный анализ;

2) качественный (структурный) анализ.

К о л и ч е с

т в е н н ы й а н а л и з –
это исследование расчётной схемы сооружения,
заключающееся в оценке баланса (соотношения)
суммарного числа nΔ степеней свободы дисков системы
до наложения на них внешних и внутренних связей
(т.е. несвязанных дисков) и суммарного числа nc
внешних и внутренних связей системы,
в пересчёте на связи первого типа.

Необходимое условие
геометрической неизменяемости системы:



( W = nΔ – nc )

Этапы кинематического анализа   1) количественный анализ;   2) качественный (структурный) анализ.К о л и

Слайд 12К о л и ч е с т в е

н н ы й а н а л и

з




( W = nΔ – nc )

Необходимое условие геометрической неизменяемости системы:

Для плоской системы:
nΔ = 3D; nc = nвнут. св. + nвнеш. св. = 3П + 2H + C + C0
D – количество дисков;
П – число простых припаек
Н – число простых шарниров
С – количество внутренних связей первого типа ( линейных и угловых );
С0 – число внешних ( опорных ) связей – в пересчёте на связи первого типа.

между дисками системы,
без учёта диска «земля»;



nвнут. cв.

nвнеш. cв.

Простая припайка – жёсткое соединение двух дисков.
Простой шарнир ( цилиндрический или поступательный ) – шарнирное соединение двух дисков.

Сложная ( кратная ) припайка

Сложный ( кратный ) шарнир






Соответствующее
( жёсткое или шарнирное )
соединение более чем двух дисков

Учитываются эквивалентным числом простых припаек ( шарниров ):

П = nD – 1

H = nD – 1

nD – число соединяемых дисков в узле

W = 3D – ( 3П + 2H + C + C0 )

К о л и ч е с т в е н н ы й  а н

Слайд 13 Качественный (структурный) анализ –
это исследование структуры
расчётной схемы сооружения,

заключающееся
в проверке правильности расположения связей, выявлении возможных дефектов соединения

дисков и завершающееся определением кинематического качества (природы) системы (её геометрической неизменяемости, изменяемости или мгновенной изменяемости).


Качественный (структурный) анализ –это исследование структуры расчётной схемы сооружения, заключающееся в проверке правильности расположения связей, выявлении

Слайд 14 Классификация связей по кинематическому признаку
Н е о б х

о д и м ы е с в я

з и – это связи, удаление которых
вызывает изменение кинематической природы системы
(геометрически неизменяемая система превращается
в геометрически изменяемую или мгновенно изменяемую,
мгновенно изменяемая система становится
геометрически изменяемой).
Л и ш н и м и называются связи, при удалении которых
кинематическая природа системы не изменяется, но эти связи ограничивают перемещения в деформируемой системе.
Л о ж н ы е с в я з и – такие, которые не оказывают
никакого влияния ни на кинематическую природу системы,
ни на перемещения в ней, определяемые с учётом
деформации элементов.



Избыточные
связи












δS – возможное перемещение в системе с удалённой связью по направлению этой связи (без учёта деформаций);
– то же, с учётом деформаций элементов системы.


Классификация связей по кинематическому признакуН е о б х о д и м ы е

Слайд 15Типовые способы геометрически неизменяемого соединения дисков плоских систем



















Типовые способы  геометрически неизменяемого  соединения дисков плоских систем

Слайд 16Дополнительные сведения, вытекающие из структурного анализа

Практическая рекомендация по последовательности расчёта
статически

определимой составной системы:
для определения реакций связей рассматривается равновесие частей,
начиная

с самой второстепенной и заканчивая главной
(то есть в порядке, обратном последовательности синтеза).


Если в процессе синтеза системы на нескольких шагах (более одного) последовательно образуются геометрически неизменяемые системы, то рассматриваемая система может квалифицироваться как составная, с выделением в ней главных и второстепенных частей.

Главной называется геометрически неизменяемая часть
составной системы, способная воспринимать любые воздействия
даже при отсутствии всех других частей.

Второстепенная часть составной системы – это часть, утрачивающая работоспособность вследствие возникновения
её геометрической или мгновенной изменяемости
при удалении других частей (всех или некоторых).

Второстепенные части могут образовывать иерархию по признаку
большей-меньшей второстепенности.
Самой второстепенной частью является та, которая неработоспособна
при отсутствии любой другой части системы.

Замечание: понятия составной системы, главной и второстепенной частей, а также соображения о последовательности расчёта не относятся непосредственно к кинематическому анализу ; принципиально важными они являются для статически определимых систем.

Дополнительные сведения, вытекающие из структурного анализаПрактическая рекомендация по последовательности расчёта статически определимой составной системы:для определения реакций связей

Слайд 17Пример выполнения кинематического анализа плоской стержневой системы
















A
B
d
e
c
f
h
k
p
Основные вопросы
кинематического анализа:
является ли

система геометрически неизменяемой?
2) если да, то статически определима она или

статически неопределима?

g

Пример выполнения кинематического анализа плоской стержневой системыABdecfhkpОсновные вопросыкинематического анализа:является ли система геометрически неизменяемой?2) если да, то статически

Слайд 18Этап 1. Количественный анализ –
















D1
D5
D3
D4
D2


D7
D6
A
B
c
e
d
g
f
k
h
W = 3D – (3П+2Н+С+С0)
D =

7 ( диски D5 и D6 – стержни

с ломаными осями)
П = 1 (между дисками D3 и D4
в узле f )
Н = 6 (простые – в узлах e, g, c, f,
кратный – в узле h )
С = 2 ( стержни ed и kp )
С0 = 4 (шарнирные неподвижные
опоры А и В )

p

Связь
1-го типа

Связь
1-го типа



W = 3*7 – (3*1+2*6+2+4) = 21 – 21 = 0 –
необходимое условие геометрической неизменяемости выполняется.
В ы в о д: система может быть геометрически неизменяемой.

проверка выполнения необходимого, но недостаточного условия геометрической неизменяемости системы

Этап 1. Количественный анализ –D1D5D3D4D2D7D6ABcedgfkhW = 3D – (3П+2Н+С+С0)D = 7  ( диски D5 и D6

Слайд 19Этап 2. Качественный (структурный) анализ – проверка правильности расположения связей
















D1
D2
g
d


e
DI
Шаг

1: соединение двух дисков (D1 и D2 ) по способу

2б –
с помощью шарнира g и линейной связи ed, ось которой не проходит через центр шарнира. Результат – диск DI : DI = D1 + D2 (по способу 2б).

Вариант:
соединение трёх дисков
(D1 ,D2 и диск ed) по способу 3б – с помощью трёх цилиндрических шарниров
в точках e, d и g, не лежащих
на одной прямой.
Результат – диск DI :
DI = D1 + D2 + ed
(по способу 3б).

Этап 2.  Качественный (структурный) анализ – проверка правильности расположения связейD1D2gdeDIШаг 1: соединение двух дисков (D1 и

Слайд 20Этап 2. Качественный (структурный) анализ – проверка правильности расположения связей









D1
D2
g
d

e
DI
Шаг

2: соединение трёх дисков ( DI , cfB и диск

«земля» ) по способу 3б –
с помощью трёх цилиндрических шарниров в точках A, c и B,
не лежащих на одной прямой.
Результат – диск DII :
DII = DI + cfB + «земля»
(по способу 3б) .

Примечание:
поскольку в диск DII
входит диск «земля»,
то DII является
геометрически
неизменяемой
системой:


c

A




DII






f

B







«з е м л я»




Этап 2.  Качественный (структурный) анализ – проверка правильности расположения связейD1D2gdeDIШаг 2: соединение трёх дисков ( DI

Слайд 21Этап 2. Качественный (структурный) анализ – проверка правильности расположения связей










D1
D2
g
d

e
DI
Шаг

3: соединение трёх дисков ( DII , D5 и D6

) по способу 3б –
с помощью трёх цилиндрических шарниров в точках e, h и f,
не лежащих на одной прямой.
Результат – диск DIII :
DIII = DII + D5 + D6
(по способу 3б) .

Примечание:
поскольку в диск DIII
входит диск «земля»,
то DIII является
геометрически
неизменяемой
системой:


c

f




A

B



DII


DIII

D5


h


D6










«з е м л я»

Этап 2.  Качественный (структурный) анализ – проверка правильности расположения связейD1D2gdeDIШаг 3: соединение трёх дисков ( DII

Слайд 22Этап 2. Качественный (структурный) анализ – проверка правильности расположения связей








D1
D2
g
d

e
DI
Шаг

4: соединение двух дисков ( DIII и D7 ) по

способу 2б – с помощью
цилиндрического шарнира в точке h и линейной связи ed, ось которой
не проходит через центр шарнира.
Результат – диск DIV :
DIV = DIII + D7 (по способу 2б) .

Примечание:
поскольку в диск DIV входит диск «земля», то DIV
является геометрически неизменяемой системой:

c

f




A

B



DII




D5



D6

k


DIV

Варианты:
а) соединение трёх дисков
(DIII ,hk и kp) по способу 3б –
с помощью трёх цилиндрических шарниров
h, k и p, не лежащих
на одной прямой;
б) присоединение точки k
к диску DIII по способу 1 –
с помощью двух связей
1-го типа (hk и kp).

DIII






h

p

D7



«з е м л я»

Этап 2.  Качественный (структурный) анализ – проверка правильности расположения связейD1D2gdeDIШаг 4: соединение двух дисков ( DIII

Слайд 23Р е з ю м е :
















A
B
d
e
c
f
h
k
p
В ы в

о д :
система
геометрически
неизменяемая
и
статически
определимая.

а) в системе имеется достаточное

число связей, избыточных связей нет (W = 0); б) структура системы правильная – отсутствуют дефекты расположения связей.

g

Р е з ю м е :ABdecf hkpВ ы в о д :системагеометрическинеизменяемаяи статически определимая.  а)

Слайд 24Дополнительные сведения, вытекающие из структурного анализа
















A
B
d
e
c
f
h
k
p
Практическая
рекомендация
по последовательности
расчёта:
для определения реакций

связей рассматривается
равновесие частей
системы, начиная
с самой второстепенной
и

заканчивая главной:
ВЧ2 ВЧ1 ГЧ
(то есть в порядке,
обратном
последовательности
синтеза).





Главная
часть
(ГЧ)

ВЧ1

ВЧ2

Второстепенные
части




g

Поскольку в процессе синтеза системы на нескольких шагах (более одного) последовательно образуются геометрически неизменяемые системы (ГНС1 , ГНС2 , ГНС), то рассматриваемая система может квалифицироваться как составная, с выделением в ней главной и второстепенных частей:

Дополнительные сведения, вытекающие из структурного анализаABdecf hkpПрактическаярекомендацияпо последовательности расчёта:для определения реакций связей рассматривается равновесие частей системы, начиная

Слайд 25Системы, для которых качественный
(структурный) анализ расчётной схемы
может быть полностью

выполнен
с использованием только типовых способов
(приёмов) геометрически неизменяемого
соединения дисков, называются


системами с простой структурой.

Системы, для которых качественный
(структурный) анализ расчётной схемы
не может быть полностью выполнен
с использованием только типовых способов
(приёмов) геометрически неизменяемого
соединения дисков, называются
системами со сложной структурой.


В качественном анализе систем со сложной структурой применяются:
– исследование кинематической природы связей ( всех или части ) по критерию ;
– проверка по аналитическому признаку геометрической неизменяемости ;
– способ замены связей.



Системы, для которых качественный(структурный) анализ расчётной схемы может быть полностью выполнен с использованием только типовых способов(приёмов) геометрически

Слайд 26Пример кинематического анализа системы со сложной структурой



















Этап 1. Количественный анализ
D1
D5
D4
D2
D3
Связь
Связь
D = 5;

П = 0; H = 3; C = 2; C0

= 7

W = 3*D – ( 3*П + 2*H + C + C0 ) =
= 3*5 – ( 3*0 + 2*3 + 2 + 7 ) = 0 –
необходимое условие геометрической неизменяемости выполняется;
система может быть геометрически неизменяемой
Пример кинематического анализа системы со сложной структуройЭтап 1. Количественный анализD1D5D4D2D3СвязьСвязьD = 5; П = 0; H =

Слайд 27Пример кинематического анализа системы со сложной структурой















Этап 2. Качественный (структурный) анализ
А
В
Выполнить синтез

системы с помощью типовых способов геометрически неизменяемого соединения дисков не

удаётся,
поэтому исследуется кинематическая природа связей системы:
удаляется стержень АВ, который может рассматриваться
как линейная связь 1-го типа


Направление

удалённой
связи

В результате удаления связи
система превращается в механизм,
которому задаётся возможное перемещение





А

В











Пример кинематического анализа системы со сложной структуройЭтап 2. Качественный (структурный) анализАВВыполнить синтез системы с помощью типовых способов

Слайд 28Пример кинематического анализа системы со сложной структурой






















А
В
Определяется перемещение δS по направлению удалённой

связи –
в данном случае проекция взаимного (относительного)
линейного перемещения

точек А и В по направлению
оси удалённой линейной связи

Этап 2. Качественный (структурный) анализ

Направление

удаленной
связи

δS,l

δS,r

δS = δS,l + δS,r = 0

Вывод: удалённая связь – необходимая, следовательно, структура системы правильная,
система геометрически неизменяемая.

Можно
использовать
план
перемещений
узлов:

С

К

0

В

А

С, K

α

α





α

α

δS,l

δS,r


δS

Пример кинематического анализа системы со сложной структуройАВОпределяется перемещение δS по направлению удалённой связи – в данном случае

Слайд 29К о н т р о л ь н ы

е в о п р о с ы
( в

скобках даны номера слайдов, на которых можно найти ответы на вопросы;
для перехода к слайду с ответом можно сделать щелчок мышью по номеру в скобках*);
для возврата к контрольным вопросам сделать щелчок правой кнопкой мыши
и выбрать «Перейти к слайду 29» )
1. Что такое кинематический анализ? Его назначение? ( 2 )
2. Назовите основные понятия кинематического анализа. ( 3 )
3. Дайте определение диска. ( 3 ) 3. Дайте определение диска. ( 3 ) Что может быть диском? ( 4 )
4. Что такое диск «земля» и какими свойствами он наделяется? ( см. [1] )
5. Дайте определение связи. ( 3 )) По каким признакам и как классифицируются связи? ( 5 )
6. Перечислите типы связей плоских систем и для каждого из них
дайте кинематическую и статическую характеристики. ( 6 )
7. Каким комбинациям простых связей кинематически эквивалентны
сложные связи разных типов? ( см. [1] )
8. Дайте разные варианты изображения связей плоских систем. ( 6 )
9. Какова роль гипотезы отвердения материала в кинематическом анализе? ( см. [1] )
10. Что такое степени свободы ( 3 ) и какие величины могут выступать в качестве
степеней свободы? ( 8 )
11. Сколько степеней свободы имеет жёсткий диск в пространстве и в плоскости?
А точка? ( 8 )
12. Ответы на какие главные вопросы даются в ходе кинематического анализа? ( 17 )
13. Какие системы называются геометрически неизменяемыми?
Геометрически изменяемыми? Мгновенно изменяемыми? ( 9 )
14. Назовите этапы кинематического анализа. ( 11 )
15. Дайте определение количественного анализа. ( 11 )
16. Что означают символы nΔ и nc ( 11 ) и как вычисляются обозначаемые ими
величины? ( 12 )
17. Какие припайки (шарниры) называются сложными ( кратными )?
Как определяется число эквивалентных им простых припаек ( шарниров )? ( 12 )
_______________________________________________
*) Только в режиме «Показ слайдов»


[1] Себешев В.Г. Кинематический анализ сооружений : Учеб. пособие /
Новосибирск: НГАСУ (Сибстрин), 2006. – 58 с.

К о н т р о л ь н ы е  в о п р о

Слайд 30К о н т р о л ь н ы

е в о п р о с ы
( в

скобках даны номера слайдов, на которых можно найти ответы на вопросы;
для перехода к слайду с ответом можно сделать щелчок мышью по номеру в скобках*);
для возврата к контрольным вопросам сделать щелчок правой кнопкой мыши
и выбрать «Перейти к слайду 30» )
18. Какой вид имеет необходимое условие геометрической неизменяемости системы? ( 11 )
19. Почему оно является недостаточным? ( см. [1] )
20. Что такое W ? Как вычисляется эта характеристика? ( 12 )
21. Какой вывод делается по результатам кинематического анализа, если получается
W > 0 ? ( см. [1] ) А если необходимое условие неизменяемости выполняется? ( 18 )
22. Что такое качественный ( структурный ) анализ? ( 13 )
23. Как классифицируются простые связи по кинематическому признаку? ( 14 )
24. Дайте определения необходимой, лишней и ложной связей. ( 14 )
25. Какие геометрические параметры используются в описании кинематических признаков
разных связей? ( 14 )
26. Что общего у необходимых и лишних связей? У лишних и ложных связей?
В чём различия между ними? ( 14 ) Что нужно делать с обнаруженными ложными
связями? ( см. [1] )
27. Как выявляются лишние связи? ( см. [1] )
28. Перечислите типовые способы геометрически неизменяемого соединения дисков,
объясните смысл каждого из них с указанием требований к расположению связей. ( 15 )
29. Какова последовательность действий при выполнении структурного анализа
с применением типовых способов соединения дисков? ( см. [1] )
30. Какие выводы делаются по результатам структурного анализа системы? ( 23 )
31. Что такое система с простой структурой? ( 25 )
32. Что такое система со сложной структурой? Каковы возможные пути выполнения
структурного анализа таких систем? ( 25 )
33. Какие части составной системы называются главными,
а какие – второстепенными? ( 16 )
____________________________________________________________
*) Только в режиме «Показ слайдов»


[1] Себешев В.Г. Кинематический анализ сооружений : Учеб. пособие /
Новосибирск: НГАСУ (Сибстрин), 2006. – 58 с.

К о н т р о л ь н ы е  в о п р о

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика