Слайд 1КЛАССИФИКАЦИЯ СИСТЕМ
4.1. КЛАССИФИКАЦИЯ ПО ПРОИСХОЖДЕНИЮ
4.2. КЛАССИФИКАЦИЯ ПО ОБЪЕКТИВНОСТИ СУЩЕСТВОВАНИЯ
4.3. ДЕЙСТВУЮЩИЕ
СИСТЕМЫ
4.4. ЦЕНТРАЛИЗОВАННЫЕ И ДЕЦЕНТРАЛИЗОВАННЫЕ СИСТЕМЫ
4.5. КЛАССИФИКАЦИЯ ПО РАЗМЕРНОСТИ
4.6. КЛАССИФИКАЦИЯ СИСТЕМ
ПО ОДНОРОДНОСТИ И РАЗНООБРАЗИЮ СТРУКТУРНЫХ ЭЛЕМЕНТОВ
4.7. ЛИНЕЙНЫЕ И НЕЛИНЕЙНЫЕ СИСТЕМЫ
4.8. ДИСКРЕТНЫЕ СИСТЕМЫ.
4.9. КАУЗАЛЬНЫЕ И ЦЕЛЕНАПРАВЛЕННЫЕ СИСТЕМЫ
Системный анализ и теория систем
Лекция №4
Слайд 2Системный анализ и теория систем
Классификация систем
Многообразие систем довольно велико,
и существенную помощь при их изучении оказывает классификация.
Классификация - это
разделение совокупности объектов на классы по некоторым наиболее существенным признакам.
Важно понять, что классификация – это только модель реальности [12], поэтому к ней надо так и относиться, не требуя от неё абсолютной полноты. Ещё необходимо подчеркнуть относительность любых классификаций.
Сама классификация выступает в качестве инструмента системного анализа. С её помощью структурируется объект (проблема) исследования, а построенная классификация является моделью этого объекта.
Полной классификации систем в настоящее время нет, более того, не выработаны окончательно её принципы. Разные авторы предлагают разные принципы классификации, а сходным по сути – дают разные названия [5, 12, 21, 22, и др.].
Слайд 3Системный анализ и теория систем
4.1. Классификация по происхождению
В зависимости от происхождения системы делятся на
естественные и искусственные (создаваемые, антропогенные).
Естественные системы – это системы, объективно существующие в действительности, в живой и неживой природе и обществе.
Эти системы возникли в природе без участия человека.
Примеры: атом, молекула, клетка, организм, популяция, общество, Вселенная и т. п.
Искусственные системы — это системы, созданные человеком.
Примеры:
Холодильник, самолёт, предприятие, фирма, город, государство, партия, общественная организация и т. п.
Одной из первых искусственных систем можно считать систему торговли [13].
Кроме того, можно говорить о третьем классе систем — смешанных системах, куда относятся эргономические (машина — человек-оператор), автоматизированные, биотехнические, организационные и другие системы [12].
Слайд 4Системный анализ и теория систем
4.2. Классификация по объективности существования
Все системы
можно разбить на две большие группы: реальные (материальные или физические)
и абстрактные (символические) системы.
Реальные системы состоят из изделий, оборудования, машин и вообще из естественных и искусственных объектов.
Абстрактные системы, по сути, являются моделями реальных объектов - это языки, системы счисления, идеи, планы, гипотезы и понятия, алгоритмы и компьютерные программы, математические модели, системы наук.
Иногда выделяют идеальные или концептуальные системы – системы, которые выражают принципиальную идею или образцовую действительность – образцовый вариант имеющейся пли проектируемой системы.
Также можно выделить виртуальные системы – не существующие в действительности модельные или мыслительные представления реальных объектов, явлений, процессов (могут быть как идеальными, так и реальными системами).
Слайд 5Системный анализ и теория систем
4.3. Действующие системы
Выделим из всего многообразия
создаваемых систем действующие системы [5]. Такие системы способны совершать операции,
работы, процедуры, обеспечивать заданное течение технологических процессов, действуя по программам, задаваемым человеком. В действующих системах можно выделить следующие системы: 1) технические, 2) эргатические, 3) технологические, 4) экономические, 5) социальные, б) организационные и 7) управления.
1. Технические системы представляют собой материальные системы, которые решают задачи по программам, составленным человеком; сам человек при этом не является элементом таких систем [5].
Техническая система - это совокупность взаимосвязанных физических элементов.
В качестве связей в таких системах выступают физические взаимодействия (механические, электромагнитные, гравитационные и др.).
Примеры: автомобиль, холодильник, компьютер.
2. Эргатические системы. Если в системе присутствует человек, выполняющий определенные функции субъекта, то говорят о эргатической системе.
Эргатическая система - это система, составным элементом которой является человек-оператор [28].
Слайд 6Системный анализ и теория систем
Частным случаем эргатичесхой системы будет человеко-машинная
система - система, в которой человек-оператор или группа операторов взаимодействует
с техническим устройством в процессе производства материальных ценностей, управления, обработки информации и т.д. [21].
Примеры:
Шофер за рулем автомобиля.
Рабочий, вытачивающий деталь на токарном станке.
3. Технологические системы. Существуют два класса определения понятия "технология":
- как некой абстрактной совокупности операции;
- как некой совокупности операций с соответствующими аппаратно- техническими устройствами или инструментами.
Отсюда, по аналогии со структурой (см. разд. 4.5.1), можно говорить о формальной и материальной технологической системе.
Технологическая система (формальная) – это совокупность операций (процессов) в достижении некоторых целей (решений некоторых задач).
Структура такой системы определяется набором методов, методик, рецептов, регламентов, правил и норм.
Слайд 7Системный анализ и теория систем
Элементами формальной технологической системы будут операции
(действия) или процессы. Ранее процесс был определен как последовательная смена
состояний, здесь же мы будем рассматривать другое понимание процесса: как последовательной смены операций.
Процесс – это последовательная смена операций (действий направленных на изменение состояния объекта.
Связями в технологической системе поступают свойства обрабатываемых объектов или сигналы, передаваемые от операции к операции.
Технологическая система (материальная) – это совокупность реальных приборов, устройств, инструментов и материалов (техническое, обеспечение системы), реализующих операции (процессное обеспечение системы) и предопределяющих их качество и длительность.
Пример. Формальная технологическая система производства борща - рецепт. Материальная технологическая система производства борща – совокупность ножей, кастрюль, кухонных приборов, реализующих рецепт. В абстрактной технологии мы говорим о том, что надо отварить мясо, но не оговариваем ни тип кастрюли, ни вид плиты (газовая или электрическая). В материальной технологии техническое обеспечение приготовления борща будет определять его качество и длительность тех или иных операций.
Слайд 8Системный анализ и теория систем
Технологическая система более гибкая, чем техническая:
минимальными преобразованиями ее можно переориентировать на производство других объектов, либо
на получение других свойств последних.
Примеры. Технологические системы: производство бумаги, изготовление автомобиля, оформление командировки, получение денег в банкомате.
4. Экономическая система – что система отношений (процессов), складывающихся в экономике. Развернём что определение.
Экономическая система – это совокупность экономических отношений, возникающих в процессе производства, распределения, обмена и потребления экономических продуктов и регламентируемых совокупностью соответствующих принципов, правил и законодательных норм.
5. Социальная система. Поскольку мы рассматриваем только создаваемые системы, то социальную систему будем рассматривать в следующем разрезе:
Социальная система - это совокупность мероприятий, направленных на социальное развитие жизни людей.
Слайд 9Системный анализ и теория систем
К таким мероприятиям относятся: улучшение социально-экономических
и производственных условий труда, усиление его творческого характера, улучшение жизни
работников, улучшение жилищных условий и т. п.
6. Организационная система. Взаимодействие вышеназванных систем обеспечивает организационная система (система организационного управления [21]).
Организационная система – это совокупность элементов, обеспечивающих координацию действий, нормальное функционирование и развитие основных функциональных элементов объекта [5].
Элементы такой системы представляют собой органы управления,, обладающие правом принимать управленческие решения – это руководители, подразделения или даже отдельные организации (например, министерства).
Связи в организационной системе имеют информационную основу и определяются должностными инструкциями и другими нормативными документами, в которых прописаны права, обязанности ответственность органа управления.
7. Система управления. Управление рассматривается как действия или функция, обеспечивающие реализацию заданных целей.
Слайд 10Системный анализ и теория систем
Систему, в которой реализуется функция управления,
называют системой управления [21].
Система управления содержит два главных элемента: управляемую
подсистему (объект управления) и управляющую подсистему (осуществляющую функцию управления).
Применительно к техническим системам управляющую подсистему называют системой регулирования, а к социально-экономическим — системой организационного управления.
Разновидностью системы управления является эргатическая система - человеко-машинная система управления.
Пример.
Рассмотрим работу некоторого магазина и попытаемся выделить в его работе вышеназванные системы.
В магазине имеется система управления, состоящая из субъекта управления - руководства и объекта управления — всех остальных систем магазина.
Управление реализуется системой организационного управления — организационной системой, состоя шей из директора, его заместителей, начальников отделов и секций, связанных определенными отношениями подчиненности.
В магазине функционирует экономическая система, включающая в себя такие экономические отношения, как производство (услуг и, возможно, товаров обмен (денег на товары и услуги), распределение (прибыли).
Слайд 11Системный анализ и теория систем
Имеется социальная система, сформулированная в коллективном
и/или трудовых договорах.
Экономические отношения обмена реализуются в виде некоторых технологических
систем (технология продажи товара, технология возврата денег).
Технологические системы в свою очередь, строятся на базе технических систем (кассовые аппараты, сканеры штрих-кода, компьютеры, калькуляторы) Кассир, работающий на кассовом аппарате, представляет собой эргатическую систему.
4.4. Централизованные и децентрализованные системы
Централизованной системой называется система, в которой некоторый элемент играет главную, доминирующую роль в функционировании системы.
Такой главный элемент называется ведущей частью системы или её центром. При этом небольшие изменения ведущей части вызывают значительные изменения всей системы: как желательные, так и нежелательные.
К недостаткам централизованной системы можно отнести низкую скорость адаптации (приспособления к изменяющимся условиям окружающей среды), а также сложность управления из-за огромного потока информации подлежащей переработке в центральной части систем [1].
Слайд 12Системный анализ и теория систем
Децентрализованная система – это система, в
которой нет главного элемента.
Важнейшие подсистемы в такой системе имеют приблизительно
одинаковую ценность и построены не вокруг центральной подсистемы, а соединены между собой последовательно или параллельно.
Примеры.
Армейские структуры представляют собой ярко выраженные централизованные системы.
Интернет является практически идеальной децентрализованной системой.
4.5. Классификация по размерности.
Системы подразделяются на одномерные и многомерные.
Система, имеющая один вход и один выход, называется одномерной. Если входов или выходов больше одного – многомерной.
Нужно понимать условность одномерности системы — в реальности любой объект имеет бесчисленное число входов и выходов.
Слайд 13Системный анализ и теория систем
4.6. Классификация систем по однородности и
разнообразию структурных элементов
Системы бывают гомогенные, или однородные, и гетерогенные, или
разнородные, а также смешанного типа.
В гомогенных системах структурные элементы системы однородны, т. е. обладают одинаковыми свойствами. В связи с этим в гомогенных системах элементы взаимозаменяемы.
Пример. Гомогенная компьютерная система в организации состоит из однотипных компьютеров с установленными на них одинаковыми операционными системами и прикладными программами. Это позволяет заменить вышедший из строя компьютер любым другим без дополнительной настройки и переучивания конечного пользователя.
Понятие «гомогенная система» широко используется при описании свойств газов, жидкостей или популяций организмов.
Гетерогенные системы состоят из разнородных элементов, не обладающих свойством взаимозаменяемости.
Примеры.
1. Гетерогенная сеть – информационная сеть, в которой работают протоколы сетевого уровня различных фирм-производителей [21]. Гетерогенная вычислительная сеть состоит из фрагментов разной топологии и разнотипных технических средств.
Слайд 14Системный анализ и теория систем
2. Если университет в обычном понимании
является гомогенным образованием, т. е. реализует подготовку по высшему и
послевузовскому образованию (которые близки как по учебным программам, так и по методам их преподавания), то университетский комплекс представляется собой гетерогенную систему, в которой проводится подготовка по программам начального, среднего, высшего послевузовского образования [11].
4.7. Линейные и нелинейные системы
Система называется линейной, если она описывается линейными уравнениями (алгебраическими, дифференциальными, интегральными и т. п.), в противном случае - нелинейной.
Для линейных систем справедлив принцип суперпозиции: реакция системы на любую комбинацию внешних воздействий равна сумме реакций на каждое из этих воздействий, поданных на систему порознь. Предположим, что после изменения входной переменной на величину Δх выходная переменная изменяется на Δу. Если система линейна, то после двух независимых изменений входной переменной на Δx1 и Δх2. таких, что Δх1+Δх2 =Δх, суммарное изменение выходной переменной также будет равно Δу.
Слайд 15Системный анализ и теория систем
Большинство сложных систем являются нелинейными. В
связи с этим для упрощения анализа систем довольно часто применяют
процедуру линеаризации, при которой нелинейную систему описывают приближенно линейными уравнениями в некоторой (рабочей области изменения входных переменных. Однако не всякую нелинейную систему можно линеаризировать, в частности, нельзя линеаризировать дискретные системы.
4.8. Дискретные системы.
Среди нелинейных систем выделяют класс дискретных систем.
Дискретная система - это система, содержащая хотя бы один элемент дискретного действия.
Дискретный элемент - это элемент, выходная величина которого изменяется дискретно, т. е. скачками, даже при плавном изменении входных величин.
Все остальные системы относятся к системам непрерывного действия.
Система непрерывного действия (непрерывная система) состоит только из элементов непрерывного действия, т. е. элементов, выходы которых изменяются плавно при плавном изменении входных величин.
Слайд 16Системный анализ и теория систем
4.9. Каузальные и целенаправленные системы
В зависимости
от способности системы ставить себе цель различают каузальные и целенаправленные
(целеустремленные, активные) системы.
К каузальным системам относится широкий класс неживых систем:
Каузальные системы - это системы, которым цель внутренне не присуща.
Если такая система и имеет целевую функцию (например, автопилот), то эта функция задана извне пользователем.
Целенаправленные системы - это системы, способные к выбору своего поведения в зависимости от внутренне присущей цели [8].
В целенаправленных системах цель формируется внутри системы.
Пример. Система "самолет-пилоты" способна поставить себе цель и отклониться от маршрута.
Элемент целенаправленности всегда присутствует в системе, включающей в себя людей (или еще шире живые существа). Вопрос чаще всего состоит в степени влияния этой целенаправленности на функционирование объекта. Если мы имеем дело с ручным производством, то влияние так называемого человеческого фактора очень большое. человек, группа людей или весь коллектив способны поставить цель своей деятельности, отличную от цели компании.
Слайд 17Системный анализ и теория систем
Активные системы, к которым, в первую
очередь, относятся организационные, социальные и экономические, в зарубежной литературе называются
«мягкими» системами. Они способны сознательно предоставлять недостоверную информацию и сознательно не выполнять планы, задания, если им это выгодно. Важным свойством таких систем является дальновидность, обеспечивающая способность системы прогнозировать будущие последствия принимаемых решений. Это, в частности, затрудняет применение обратной связи для управления системой.
Кроме того, иногда на практике системы условно делят на системы, стремящиеся к цели – целеориентированные, и на системы, которые ориентированы, в первую очередь, не на цели, а на определенные ценности – ценностноориентированные.
Слайд 18Системный анализ и теория систем
4.10. Большие и сложные системы
Достаточно часто
термины «большая система» и «сложная система» используются как синонимы [21].
В то же время существует точка зрения, что большие и сложные системы — это разные классы систем. При этом некоторые авторы связывают понятие «большая" с величиной системы, количеством элементов (часто относительно однородных), а понятие "сложная" – со сложностью отношений, алгоритмов или сложностью поведения [14]. Существуют более убедительные обоснования различия понятий «большая система" и "сложная" "система».
4.10.1. Большие системы
Понятие «большая система» стало употребляться после появления книги Р.Х. Гуда и Р.З. Макола [7]. Этот термин широко использовался в период становления системных исследований для того, чтобы подчеркнуть принципиальные особенности объектов и проблем, требующих применения системного подхода [21].
Слайд 19Системный анализ и теория систем
В качестве признаков большой системы предлагалось
использовать различные понятия:
- понятие иерархической структуры, что, естественно,
сужало класс структур, с помощью которых может отображаться система;
- понятие «человеко-машинная» система (но тогда выпадали полностью автоматические комплексы);
- наличие больших потоков информации;
- или большого числа алгоритмов ее переработки
У.Р. Эшби считал, что система является большой с точки зрения наблюдателя, возможности которого она превосходит в каком-то аспекте, важном для достижения цели [29]. При этом физические размеры объекта не являются критерием отнесения объекта к классу больших систем. Один и тот же материальный объект в зависимости от цели наблюдателя и средств, имеющихся в его распоряжении, можно отображать или не отображать большой системой. Ю.И. Черняк также в явном виде связывает понятие большой системы с понятием «наблюдатель»: для изучения большой системы. в отличие от сложной необходим "наблюдатель" (имеется в виду не число людей, принимающих участие в исследовании или проектировании системы, а относительная однородность их квалификации: например, инженер или экономист) [25].
Слайд 20Системный анализ и теория систем
Он подчёркивает, что в случае большой
системы объект может быть описан как бы на одном языке,
т. е. с помощью единого метода моделирования, хотя и по частям, подсистемам. Еще Ю.И. Черняк предлагает называть большой системой «такую, которую невозможно исследовать иначе, как по подсистемам».
4.10.2. Классификация систем по сложности
Существует ряд подходов к разделению систем но сложности, и, к сожалению, нет единого определения этому понятию, нет и чёткой границы, отделяющей простые системы от сложных. Разными авторами предлагались различные классификации сложных систем.
Например, признаком простой системы считают сравнительно небольшой объем информации, требуемый для её успешного управления. Системы, в которых не хватает информации для эффективного управления, считают сложными.
Слайд 21Системный анализ и теория систем
Г.Н. Поваров [16] оценивает сложность систем
в зависимости от числа элементов, входящих в систему:
- малые системы
(10-103 элементов);
- сложные (104-106);
- ультрасложные (107-1030 элементов);
- суперсистемы (1030-10200 элементов).
В частности, Ю.И. Черняк сложной называет систему, которая строится для решения многоцелевой, многоаспектной задачи [24] и отражает объект с разных сторон в нескольких моделях. Каждая из моделей имеет свой язык, а для согласования этих моделей нужен особый метаязык. При этом подчеркивалось наличие у такой системы сложной, составной цели или даже разных целей и притом одновременно многих структур (например, технологической, административной, коммуникационной, функциональной и т. д.).
B.C. Флейшман за основу классификации принимает сложность поведения системы [26].
Одна из интересных классификаций по уровням сложности предложена К. Боулдингом [4] (таблица 1). В этой классификации каждый последующий класс включает в себя предыдущий.
Условно можно выделить два вида сложности: структурную и функциональную.
Слайд 22Системный анализ и теория систем
Структурная сложность. Ст. Вир предлагает делить
системы на простые, сложные и очень сложные [2].
Простые – это
наименее сложные системы.
Сложные – это системы, отличающиеся разветвленной структурой и большим разнообразием, внутренних связей.
Очень сложная система – это сложная система, которую подробно описать нельзя.
Несомненно, что эти деления довольно условны и между ними трудно провести границу. (Здесь сразу вспоминается вопрос: с какого количества камней начинается куча?)
Слайд 23Системный анализ и теория систем
Таблица №1 Классификация систем по уровню
сложности К. Боулдинга
Слайд 24Системный анализ и теория систем
Позднее Ст. Вир [3] предложил относить
к простым системам те, которые имеют до 103 состояний, к
сложным - от 103 до 106 состояний и к очень сложным - системы, имеющие свыше миллиона состояний.
Одним из способов описания сложности является оценка числа элементов, входящих в систему (переменных, состояний, компонентов), и разнообразия взаимозависимостей между ними. Например, количественную оценку сложности системы можно произвести, сопоставляя число элементов системы (n) и число связей (m) по следующей формуле: С = m/n(n-1)
где n(n -1) – максимально возможное число связей.
Можно применить энтропийный подход к оценке сложности системы. Считается, что структурная сложность системы должна быть пропорциональна объёму информации, необходимой для её описания (снятия неопределённости). В этом случае общее количество информации о системе S, в которой априорная вероятность появления i-го свойства равна p(si), определяется как
Is = - сумма по i p(si) ln p(si)
Слайд 25Системный анализ и теория систем
Функциональная сложность. Говоря о сложности систем,
Ст. Вир отразил только одну сторону сложности – сложность строения
– структурную сложность. Однако следует сказать и о другой сложности систем – функциональной (или вычислительной).
Для количественной оценки функциональной сложности можно использовать алгоритмический подход, например количество арифметико-логических операций, требуемых для реализации функции системы преобразования входных значений в выходные1, или объём ресурсов (время счёта или используемая память), используемых в системе при решении некоторого класса задач.
Считается, что не существует систем обработки данных, которые могли бы обработать более чем 1,6 • 1017 бит информации в секунду на грамм своей массы [1. 19]. Тогда гипотетическая компьютерная система, имеющая массу, равную массе Земли, за период, равный примерно возрасту Земли, может обработать порядка 1098 (или приблизительно 2309) бит информации (предел Бреммермана). При этих расчётах в качестве информационной ячейки использовался каждый квантовый уровень в атомах, образующих вещество Земли. Задачи, требующие обработки более чем 1093 бит называются трансвычислительными. В практическом плане это означает, что, например, полный анализ системы из 100 переменных, каждая из которых может принимать 10 разных значений, является трансвычислительной задачей.
Слайд 26Системный анализ и теория систем
Пример. Если система имеет два входа,
которые могут находиться в двух возможных состояниях, то возможных вариантов
состояния - четыре. При 10 входах вариантов уже 1024, а при 20-ти (что соответствует маленькой реальной сделке) – вариантов уже 220. Когда имеется реальный оперативный план небольшой корпорации, в котором хотя бы тысяча независимых событий (входов), то вариантов получается 21000! Значительно больше предела Бреммермана.
Кроме того, выделяют такой тип сложности, как динамическая сложность. Она возникает тогда, когда меняются связи между элементами. Например, в коллективе сотрудников фирмы может время от времени меняться настроение, поэтому существует множество вариантов связей, которые могут устанавливаться между ними. Попытку дать исчерпывающее описание таким системам можно сравнить с поиском выхода из лабиринта, который полностью изменяет свою конфигурацию, как только вы меняете направление движения. Примером могут служить шахматы [15].
Слайд 27Системный анализ и теория систем
Малые и большие, сложные и простые.
Авторы книги [12] предлагают рассматривать четыре варианта сложности систем
малые простые;
малые
сложные;
большие простые;
большие сложные.
При этом выделение системы того или иною класса в одном и том же объекте зависит от точки зрения на объект, т е от наблюдателя.
Примеры:
Давно известно что обыватели всегда готовы давать советы в области воспитания, лечения, управления страной – для них это всегда малые простые системы Тогда как для воспитателей врачей и государственных деятелей – это большие сложные системы.
Исправные бытовые приборы для пользователя малые простые системы, но неисправные – малые сложные. А для мастера те же неисправные приборы – малые простые системы [12]
Шифрозамок для хозяина сейфа малая простая система, а для похитителя – большая простая [12].
Таким образом, один и тот же объект может быть представлен системами разной сложности. И это зависит не только oт наблюдателя но и от цели исследования
Слайд 28Системный анализ и теория систем
В связи с этим В А
Карташев пишет [9]: «Первичное рассмотрение даже самых сложных образований на
уровне установления их основных, главных отношений приводит к понятию простой системы»
Пример. При стратифицированном описании предприятия на самой верхней страте оно может быть описано в виде малой простой системы в виде «черного ящика» с основными ресурсами на входе и продукцией на выходе.
Слайд 29Системный анализ и теория систем
4.11. Детерминированность
Рассмотрим еще одну классификацию систем,
предложенную Ст. Биром [2].
Если входы объекта однозначно определяют его выходы,
то его поведение можно однозначно предсказать (с вероятностью 1), то объект является детерминированным в противном случае – недетерминированным (стохастическим).
Математически детерминированность можно описать как строгую функциональную связь Y = F(X), а стохастичность возникает в результате добавления случайной величины ε: Y = F(X) + ε
Детерминированность характерна для менее сложных систем;
стохастические системы сложнее детерминированных, поскольку их более сложно описывать и исследовать
Примеры:
Швейную машинку можно отнести к детерминированной системе: повернув на заданный угол рукоятку машинки можно с уверенностью сказать, что иголка переместится вверх-вниз на известное расстояние (случай неисправной машинки не рассматриваем)
Примером недетерминированной системы является собака, когда ей протягивают кость, нельзя однозначно прогнозировать поведение собаки.
Интересен вопрос о природе стохастичности. С одной стороны, стохастичность – следствие случайности.
Слайд 30Системный анализ и теория систем
Случайность – это цепь невыявленных закономерностей,
скрытых за порогом нашего понимания [18].
А с другой – приблизительности
измерений. В первом случае мы не можем учесть все факторы (входы), действующие па объект а также не знаем природы его нестационарности. Во в втором – проблема непредсказуемости выхода связана с невозможностью точно измерить значения входов и ограниченностью точности сложных вычислений.
Слайд 31Системный анализ и теория систем
4.12. Классификация систем по степени организованности
4.12.1
Степень организованности системы
Организованность или упорядоченность организованности системы R оценивается по
формуле [17]
R=1-Эреал/Эмакс,
где Эреал - реальное или текущее значение энтропии, Эмакс - максимально возможная энтропия или неопределенность по структуре и функциям системы.
Если система полностью детерминированная и организованная то Эреал = 0 и R = 1. Снижение энтропии системы до нулевого значения означает полную «заорганизованность» системы и приводит к вырождению системы. Если система полностью дезорганизованная, то R=0 и Эреал=Эмакс.
Качественная классификация систем по степени организованности была предложена В. В. Налимовым, который выделил класс хорошо организованных и класс плохо организованных, или диффузных систем [14]. Позднее к этим классам был добавлен еще класс самоорганизующихся систем [23]. Важно подчеркнуть, что наименование класса системы не является ее оценкой. В первую очередь, это можно рассматривать как подходы к отображению объекта или решаемой задачи, которые могут выбираться и зависимости от стадии познания объекта и возможности получения информации о нем [6].
Слайд 32Системный анализ и теория систем
4.12.2. Хорошо организованные системы
Если исследователю удается
определить все элементы системы и их взаимосвязи между собой и
с целями системы и вид детерминированных (аналитических или графических) зависимостей, то возможно представление объекта в виде хорошо организованной системы [6]. То есть представление объекта в виде хорошо организованной системы применяется в тех случаях, когда может быть предложено детерминированное описание и экспериментально показана правомерность его применения (доказана адекватность модели реальному объекту).
Такое представление успешно применяется при моделировании технических и технологических систем. Хотя, строго говоря. даже простейшие математические соотношения, отображающие реальные ситуации, также не являются абсолютно адекватными, поскольку, например, при суммировании яблок не учитывается, что они не бывают абсолютно одинаковыми, а вес можно измерить только с некоторой точностью. Трудности возникают при работе со сложными объектами (биологическими, экономическими, социальными и др.). Без существенного упрощения их нельзя представить в виде хорошо организованных систем. Поэтому для отображения сложного объекта в виде хорошо организованной системы приходится выделять только факторы, существенные для конкретной цели исследования. Попытки применить модели хорошо организованных систем для представления сложных объектов практически часто нереализуемы, так как, в частности, не удается поставить эксперимент, доказывающий адекватность модели. Поэтому в большинстве случаев при представлении сложных объектов и проблем на начальных этапах исследования их отображают классами, рассмотренными ниже.
Слайд 33Системный анализ и теория систем
4.12.3. Плохо организованные, или диффузные, системы
Если
не ставится задача определить все учитываемые компоненты и их связи
с целями системы, то объект представляется в виде плохо организованной (или диффузной) системы [6]. Для описания свойств таких систем можно рассматривать два подхода: выборочный и макропараметрический.
При выборочном подходе закономерности в системе выявляются на основе исследования не всего объекта или класса явлений, а путем изучения достаточно представительной (репрезентативной) выборки компонентов, характеризующих исследуемый объект или процесс. Выборка определяется с помощью некоторых правил. Полученные на основе такого исследования характеристики или закономерности распространяют на поведение системы в целом.
Пример. Если нас ни интересует средняя цена на хлеб и каком-либо городе, то можно было бы последовательно объехать или обзвонить все торговые точки города, что потребовало бы много времени и средств. А можно пойти другим путем: собрать информацию в небольшой (но репрезентативной) группе торговых точек, вычислить среднюю цену и обобщить её на весь город.
При этом нельзя забывать, что полученные статистические закономерности справедливы для всей системы с какой-то вероятностью, которая оценивается с помощью специальных приемов, изучаемых математической статистикой.
Слайд 34Системный анализ и теория систем
При макропараметрическом подходе свойства системы оценивают
с помощью некоторых интегральных характеристик (макропараметров).
Примеры:
При использовании газа для
прикладных целей его свойства не определяют путём точного описания поведения каждой молекулы, а характеризуют макропараметрами — давлением, температурой и т. д. [6]. Основываясь на этих параметрах, разрабатывают приборы и устройства, использующие свойства газа, не исследуя при этом поведение каждой молекулы.
ООН при оценке уровня качества системы здравоохранения государства применяет в качестве одной из интегральных характеристик количество детей, умерших до пяти лет, на тысячу новорожденных.
Отображение объектов в виде диффузных систем находит широкое применение при определении пропускной способности систем разного рода, при определении численности штатов в обслуживающих, например ремонтных, цехах предприятия и в обслуживающих учреждениях, при исследовании документальных потоков информации и т.д. [6]
Слайд 35Системный анализ и теория систем
4.12.4. Самоорганизующиеся системы
Класс самоорганизующихся, или развивающихся,
систем характеризуется рядом признаков, особенностей, которые, как правило, обусловлены наличием
в системе активных элементов, делающих систему целенаправленной. Отсюда вытекают особенности экономических систем, как самоорганизующихся систем, по сравнению с функционирование технических систем [20, 21]:
нестационарность (изменчивость) отдельных параметров системы и стохастичность ее поведения;
уникальность и непредсказуемость поведения системы в конкретных условиях. Благодаря наличию активных элементов системы появляется как бы "свобода воли", но в то же время возможности ее ограничены имеющимися ресурсами (элементами, их свойствами) и характерными для определенного типа систем структурными связями;
способность изменять свою структуру и формировать варианты поведения, сохраняя целостность и основные свойства (в технических и технологических системах изменение структуры, ка к правило приводит к нарушению функционирования системы или даже к прекращению существования как таковой);
Слайд 36Системный анализ и теория систем
способность противостоять энтропийным (разрушающим систему) тенденциям.
В системах с активными элементами не выполняется закономерность возрастания энтропии
и даже наблюдаются негаэтроиийные тенденции, т. е. собственно самоорганизация;
- способность адаптироваться, к изменяющимся условиям. Это хорошо по отношению к возмущающим воздействиям и помехам, но плохо, когда адаптивность проявляется и к управляющим воздействиям, затрудняя управление системой;
- способность и стремление к целеобразованию;
- принципиальная неравновесность.
Легко видеть, что хотя часть этих особенностей характерна и для диффузных систем (стохастичность поведения, нестабильность отдельных параметров), однако в большинстве своем они являются специфическими признаками, существенно отличающими этот класс систем от других и затрудняющими их моделирование.
Рассмотренные особенности противоречивы. Они в 6ольшиистве случаев являются и положительными и отрицательными, желательными и нежелательными для создаваемой системы. Их не сразу можно понять и объяснить для того, чтобы выбрать и создать требуeмую степень их проявления.
Слайд 37Системный анализ и теория систем
При этом следует иметь в виду
важное отличие открытых развивающихся систем с активными элементами от закрытых.
Пытаясь понять принципиальные особенности моделирования таких систем, уже первые исследователи отмечали, что, начиная с некоторого уровня сложности, систему легче изготовить и ввести в действие, преобразовать и изменить, чем отобразить формальной моделью. По мере накопления опыта исследования и преобразования таких систем это наблюдение подтверждалось, и была осознана их основная особенность - принципиальная ограниченность формализованного описания развивающихся, самоорганизующихся систем.
По этому поводу фон Нейманом была высказана следующая гипотеза: «У нас нет полной уверенности в том, что в области сложных задач реальный объект не может являться простейшим описанием самого себя, т. е. что всякая попытка описать его с помощью обычного словесного или формально-логического метода не приведет к чему-то более сложному, запутанному и трудновыполнимому...» [27].
Необходимость сочетания формальных методов и методов качественного анализа и положена в основу большинства моделей и методик системного анализа [21]. При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей.
Слайд 38Системный анализ и теория систем
Основную конструктивную идею моделирования при отображении
объекта классом самоорганизующихся систем можно сформулировать следующим образом: накапливая информацию
об объекте, фиксируя при этом все новые компоненты и связи и применяя их можно получать отображения последовательных состояний развивающейся системы, постепенно создавая все более адекватную модель реального, изучаемого или создаваемого объекта. При этом информация может поступать от специалистов различных областей знаний и накапливаться во времени по мере ее возникновения (в процессе познания объекта).
Адекватность модели также доказывается как бы последовательно (но мере се формирования) путем оценки правильности отражения в каждой последующей модели компонентов и связей, необходимых Для достижения поставленных целей.
Резюме
При изучении любых объектов и процессов, в том числе и систем, большую помощь оказывает классификация – разделение совокупности объектов на классы по некоторым, наиболее существенным признакам.
Слайд 39Системный анализ и теория систем
В зависимости от происхождения системы могут
быть естественными (систему, объективно существующие в живой и неживой природе
и обществе) и искусственными (системы, созданные человеком).
По объективности существования все системы можно разбить на две большие группы: реальные (материальные или физические) и абстрактные (символические) системы.
Среди всего многообразия создаваемых систем особый интерес представляют действующие системы, к которым относятся технические, технологические, экономические, социальные и организационные.
По степени централизации выделяют централизованные системы (имеющие в своем составе элемент, играющий главную, доминирующую роль в функционировании системы) и децентрализованные (не имеющие такого элемента).
Различают системы одномерные (имеющие один вход и один выход) и многомерные (если входов или выходов больше одного).
Системы бывают гомогенные, или однородные, и гетерогенные или разнородные, а также смешанного типа.
Если система описывается линейными уравнениями, то она относится к классу линейных систем, в противном случае – нелинейных.
Система, не содержащая ни одного элемента дискретного действия (выходная величина которого изменяется скачками даже при плавном изменении входных величин), называется непрерывной, в противном случае – дискретной.
Слайд 40Системный анализ и теория систем
В зависимости от способности системы поставить
себе цель различают каузальные системы (неспособные ставить себе цель) и
целенаправленные (способные к выбору своего поведения в зависимости от внутренне присущей цели).
Различают большие, очень сложные, сложные и простые системы.
По предсказуемости значений выходных переменных системы при известных значениях входных различают детерминированные и стохастические системы.
В зависимости от степени организованности выделяют классы хорошо организованных систем (их свойства можно описать в виде детерминированных зависимостей), плохо организованных (или диффузных) и самоорганизующихся (включающие активные элементы)
Начиная с некоторого уровня сложности, систему легче изготовить и ввести в действие, преобразовать и изменить. чем отобразить формальной моделью, поскольку имеется принципиальная ограниченность формализованного описания развивающихся самоорганизующихся систем.
В соответствии с гипотезой фон Неймана простейшим описанием объекта, достигшего некоторого порога сложности, оказывается сам объект, а любая попытка его строгого формального описания приводит к чему-то более трудному и запутанному.
Слайд 41Системный анализ и теория систем
Литература
Анфилатов B.C., Емельянов А.А.. Кукушкин А.А.
Системный анализ в управлении. - М.: Финансы и статистика, 2003.
- 368 с.
Вир Ст. Кибернетика и управление производством. - М.: Наука, 1965. - 391 с.
Вир Ст. Мозг фирмы. - М.: УPCC. 2005 - 416 с
Боулдинг К. Общая теории систем - скелет науки // Исследования по общей теории систем M. - М.: Прогресс, 1969. – С. 106-124.
Васильев В. И., Романов Л. Г., Червонный А. А. Основы теории систем: Конспект лекций. - М.: МГТУ ГА. 1994. - 104 с
Волкова В. И., Денисов А. А. Основы теории управления и системного анализа. - СПб.: Изд-во СПбГТУ, 1997. - 510 с
Гуд Г.Х., Макол Р. З. Системотехника. Введение в проектирование больших систем - М.: Сов. радио. 1962. - 383 с.
Дружинин В.В., Конторов Д.С. Проблемы системологии (проблемы теории сложных систем). - М.: Сов. радио. 1970. - 296.
Карташев В.А. Система систем. Очерки общей теории и методологии - М.: Прогресс-академия, 1995. - 416 с.
Качала В.В. Основы системного анализа. Мурманск: Изд-во МГТУ, 2004. - 104 с.
Ковалевский В. П. Проблемы теории и методологии проектирования регионального университетского комплекса // Университетское управление: практика и анализ. 2003. № 2(25). С. 25 -30.
Перегудов Ф.И.. Тарасенко Ф.П. Введение в системный анализ - М.: Высш. шк. 1980. - 367с.
Слайд 42Системный анализ и теория систем
Вопросы:
1. Расскажите о классификации систем.
2. В
чём разница между централизованными и децентрализованными системами?
3. В чём разница
между линейными и нелинейными системами?
4. Что такое структурная сложность системы?
5. Каковы причины нестационарности поведения системы?
6. Что такое детерминированные системы?
7. Что такое самоорганизующиеся системы?
Слайд 43Системный анализ и теория систем
Слайд 44Системный анализ и теория систем
Слайд 45Системный анализ и теория систем