Разделы презентаций


Demand assessment elementary methods 1

Содержание

2 directions in demand assessmentstatistical analysismarket intelligenceЗадача статистического анализа: определение параметров функции спроса посредством использования эмпирических данныхПри отсутствии надежной экспериментальной информации необходимо предпринять исследование рынка

Слайды и текст этой презентации

Слайд 1Demand assessment
elementary methods

Demand assessmentelementary methods

Слайд 22 directions in demand assessment
statistical analysis
market intelligence
Задача статистического анализа: определение

параметров функции спроса посредством использования эмпирических данных
При отсутствии надежной экспериментальной

информации необходимо предпринять исследование рынка
2 directions in demand assessmentstatistical analysismarket intelligenceЗадача статистического анализа: определение параметров функции спроса посредством использования эмпирических данныхПри

Слайд 3Statistical analysis
Steps:
1) Collection, validation and assessment of data
2) The choice

of the information curve
3) Verification and evaluation of the selected

curve
Statistical analysisSteps:1) Collection, validation and assessment of data2) The choice of the information curve3) Verification and evaluation

Слайд 41) Collection, validation and assessment of data
time series
cross-sectional data
Statistical analysis

1) Collection, validation and assessment of datatime seriescross-sectional dataStatistical analysis

Слайд 5 time series

1) Collection, validation and assessment of data
Statistical analysis
Examine

time changes in the demand for certain types of goods

or services and the corresponding time changes in pricing, sales volume and other independent variables that affect the demand
time series1) Collection, validation and assessment of dataStatistical analysisExamine time changes in the demand for certain

Слайд 6Adjustment of necessary information
in order to avoid effects such

as inflation
Deflationary correction: divide all nominal figures by the consumer

price index and multiplied by 100. Get "regular money" base period

And also it is necessary to take into account changes in population, accounting for seasonal and cyclical fluctuations

Long time period

time series


Adjustment of necessary information in order to avoid effects such as inflationDeflationary correction: divide all nominal figures

Слайд 7Statistical analysis
1) Collection, validation and assessment of data
cross-sectional data
Considered changing

the variables from some set in a particular time
A snapshot

of the many variables in one certain time
Statistical analysis1) Collection, validation and assessment of datacross-sectional dataConsidered changing the variables from some set in a

Слайд 8Ex: In order to determine the effect of prices on

demand, as a variable can be selected volume of sales

for a particular month,

while the set may include a list of firms producing the product

Ex: In order to determine the effect of prices on demand, as a variable can be selected

Слайд 9Statistical analysis
2) The choice of the information curve
The results of

the observations are used to estimate the parameters of demand

function

This function can then be used to predict values for the dependent variable for known values of the independent variables

Statistical analysis2) The choice of the information curveThe results of the observations are used to estimate the

Слайд 10When choosing a curve there are two main questions:
What type

of equation it is necessary to use?
How the selected function

fits and predicts the demand?

The choice of the equation depends on two conditions:
а) the number of independent variables and б) the distribution of the data, i.e. linear or nonlinear distribution

When choosing a curve there are two main questions:What type of equation it is necessary to use?How

Слайд 11If the trend of the experimental values of the dependent

variable is approximately linear, and there are many independent variables,

the estimated equation is:

The estimated demand for the product

The value of the independent variable

constant value

The coefficients of the independent variables

˄

If the trend of the experimental values of the dependent variable is approximately linear, and there are

Слайд 12If the data can be reduced to a single independent

variable (e.g. price) and the trend is almost linear than

to find the formula for this straight line we can use simple (pair) regression analysis

The equation thus is:

The quantity X,
(dependent variable)

The unit price of X (independent variable)

A constant value (which determines the point of intersection of the graph of the function with the Y axis)

The regression coefficient for Px (defining the slope of a line on the graph of a function)

If the data can be reduced to a single independent variable (e.g. price) and the trend is

Слайд 13If the trend of the dependent variable is nonlinear and

the function has a single independent variable, it is described

by the equation:

This equation can be written as the logarithm, if you find the logarithm of both parts

This logarithmic function is linear and can be estimated using simple regression analysis

If the trend of the dependent variable is nonlinear and the function has a single independent variable,

Слайд 14simple linear regression
STEP 1. Data collection
TASK: TO FIND THE REGRESSION

FUNCTION for THESE DATA!
Collect time series data
Period
Observation X
Observation Y

simple linear regressionSTEP 1. Data collectionTASK: TO FIND THE REGRESSION FUNCTION for THESE DATA!Collect time series dataPeriodObservation

Слайд 15STEP 2. Organization variables in time
simple linear regression
Причины: визуализация; определение

линейности или нелинейности для выбора соответствующей формы кривой
Period
X and Y




There

is a direct relationship between X and Y, with an increase of X, Y also increases and if X falls, Y falls too

There are no obvious links of the lag-lead between them (no need to move forward or back in time)

the trend, allocated to each series, is linear

STEP 2. Organization variables in timesimple linear regressionПричины: визуализация; определение линейности или нелинейности для выбора соответствующей формы

Слайд 16simple linear regression
STEP 3. Organization of a scatter plot
Database for

simple linear regression is a set of ordered pairs (X,

Y), which represent the values of X and Y for the reviewed period

If we assume that the true distribution function Y = f(X) is linear, then we must check the validity of this assumption

For this purpose we put the available data in a scatter chart

As between the variables does not exist relations of the lag - lead, one can contrast values for each year, the values of X for the same period without the need to move the rows

Visual inspection confirms that the selected function can be linear

simple linear regressionSTEP 3. Organization of a scatter plotDatabase for simple linear regression is a set of

Слайд 17simple linear regression
STEP 4. Evaluation of the regression line
When making

the regression analysis we use the method of least squares
Minimizing

the sum of quadratic deviations of calculated Y values from its observed values

In order to estimate the true regression line Уi = а + b Хi, parameters a and b should be calculated for the estimated regression

simple linear regressionSTEP 4. Evaluation of the regression lineWhen making the regression analysis we use the method

Слайд 18simple linear regression
STEP 4. Evaluation of the regression line
Period
Observa-tion X
Observa-tion

X
Observa-tion Y
Sum
Average

simple linear regressionSTEP 4. Evaluation of the regression linePeriodObserva-tion XObserva-tion XObserva-tion YSumAverage

Слайд 19simple linear regression
STEP 5. Comparison of calculated and actual values
How

well our estimated regression equation describes Y as a function

of X?

Compare the actual and estimated value

The deviation of the actual values from the calculated values: the results of all observations do not fit on the regression line

The fact that the observations deviate from the regression line indicates that the magnitude of Y is effected also by forces different from X

Initial X

Initial Y

Estimated function

Deviation

simple linear regressionSTEP 5. Comparison of calculated and actual valuesHow well our estimated regression equation describes Y

Слайд 20simple linear regression
Interpretation of parameters
The "a" parameter determines the point

of intersection of the regression line with the Y axis
"a"

has no economic sense in the demand equation

Option "b" determines the slope of the regression line

"b" represents the individual contribution of each independent variable to the value of the dependent variable

The positive sign of the parameter "b" indicates that the variables change in the same direction

simple linear regressionInterpretation of parametersThe

Слайд 21simple linear regression
Evaluation of the regression equation
How informative or accurate

the determined Y is?
˄
When analyzing simple regression use two statistical

indicators:
The root - mean - square error of the estimation, Se;
The coefficient of determination, r^2, and its square root, r, which is called the correlation coefficient.

The goal of linear regression evaluation: to get a linear equation, which can be used to determine the values of the independent variable Y on any existing values of the independent variable X

simple linear regressionEvaluation of the regression equationHow informative or accurate the determined Y is?˄When analyzing simple regression

Слайд 22The root – mean - square error of the estimation,

Se;

Represents the deviation of experimental points from the estimated regression

line (determines the variance of random Y values)
The root – mean - square error of the estimation, Se;Represents the deviation of experimental points from

Слайд 23The root - mean - square error of the estimation,

Se;
˄
Root-mean-square error
Observed Y for Xi
Evaluated Y for Xi
Number of observations
Number

of independent variables
The root - mean - square error of the estimation, Se;˄Root-mean-square errorObserved Y for XiEvaluated Y for

Слайд 24The more root-mean-square error is, the greater the range of

deviations are
Root-mean-square error, Se;
If Se = 0, than the estimated

equation fits perfectly the observed data (all points lie on the regression line)
The more root-mean-square error is, the greater the range of deviations areRoot-mean-square error, Se;If Se = 0,

Слайд 25coefficient of determination, r^2
Shows how well the regression model describes

the variation of the dependent variable
ЕХ: if r^2 = 0,975,

than approximately 97.5% of the changes in the dependent variable explained by the variation of the independent variable X

Values can range from 0 to 1 or from 0 to 100%

0 - there is no relationship between the variables,
1 - the regression line is perfect (all changes are explained by changes in X)

coefficient of determination, r^2Shows how well the regression model describes the variation of the dependent variableЕХ: if

Слайд 26the correlation coefficient, r,
Determines the degree of connection between

variables
-1 < r > 1

the correlation coefficient, r, Determines the degree of connection between variables-1 < r > 1

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика