Шанхая и функции затрат, полученные из регрессии стоимости (COST) на
N и фиктивной переменной для типа программы обучения (профессиональной/обычной).N
occupational school
regular school
COST
N
occupational school
regular school
COST
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
N
occupational school
regular school
COST
N
occupational school
regular school
COST
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
N
occupational school
regular school
COST
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
N
occupational school
regular school
COST
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
COST = b1 + dOCC + b2N + lNOCC + u
COST = b1 + dOCC + b2N + lNOCC + u
COST = b1 + b2N + u
COST = b1 + b2N + u
COST = (b1 + d) + (b2 + l)N + u
Occupational school
(OCC = 1; NOCC = N)
Regular school
(OCC = NOCC = 0)
COST = b1 + dOCC + b2N + lNOCC + u
Occupational school
(OCC = 1; NOCC = N)
COST = b1 + b2N + u
COST = (b1 + d) + (b2 + l)N + u
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
Странно или нет, но метод работает очень хорошо. Вот результат регрессии с использованием полной выборки 74 школ. Начнем с интерпретации коэффициентов регрессии.
12
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
14
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
Regular school
(OCC = NOCC = 0)
COST = 51,000 – 4,000OCC + 152N + 284NOCC
COST = 51,000 + 152N
^
^
15
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
Regular school
(OCC = NOCC = 0)
COST = 51,000 – 4,000OCC + 152N + 284NOCC
COST = 51,000 + 152N
COST = 51,000 – 4,000 + 152N + 284N
= 47,000 + 436N
^
^
^
Occupational school
(OCC = 1; NOCC = N)
16
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
COST
occupational school
regular school
N
COST
occupational school
regular school
N
18
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
COST
occupational school
regular school
N
19
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
COST
occupational school
regular school
N
20
. reg COST N OCC NOCC
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 3, 70) = 49.64
Model | 1.0009e+12 3 3.3363e+11 Prob > F = 0.0000
Residual | 4.7045e+11 70 6.7207e+09 R-squared = 0.6803
---------+------------------------------ Adj R-squared = 0.6666
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 81980
------------------------------------------------------------------------------
COST | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--------------------------------------------------------------------
N | 152.2982 60.01932 2.537 0.013 32.59349 272.003
OCC | -3501.177 41085.46 -0.085 0.932 -85443.55 78441.19
NOCC | 284.4786 75.63211 3.761 0.000 133.6351 435.3221
_cons | 51475.25 31314.84 1.644 0.105 -10980.24 113930.7
------------------------------------------------------------------------------
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
. reg COST N OCC NOCC
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 3, 70) = 49.64
Model | 1.0009e+12 3 3.3363e+11 Prob > F = 0.0000
Residual | 4.7045e+11 70 6.7207e+09 R-squared = 0.6803
---------+------------------------------ Adj R-squared = 0.6666
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 81980
------------------------------------------------------------------------------
COST | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--------------------------------------------------------------------
N | 152.2982 60.01932 2.537 0.013 32.59349 272.003
OCC | -3501.177 41085.46 -0.085 0.932 -85443.55 78441.19
NOCC | 284.4786 75.63211 3.761 0.000 133.6351 435.3221
_cons | 51475.25 31314.84 1.644 0.105 -10980.24 113930.7
------------------------------------------------------------------------------
22
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
. reg COST N OCC NOCC
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 3, 70) = 49.64
Model | 1.0009e+12 3 3.3363e+11 Prob > F = 0.0000
Residual | 4.7045e+11 70 6.7207e+09 R-squared = 0.6803
---------+------------------------------ Adj R-squared = 0.6666
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 81980
------------------------------------------------------------------------------
COST | Coef. Std. Err. t P>|t| [95% Conf. Interval]
---------+--------------------------------------------------------------------
N | 152.2982 60.01932 2.537 0.013 32.59349 272.003
OCC | -3501.177 41085.46 -0.085 0.932 -85443.55 78441.19
NOCC | 284.4786 75.63211 3.761 0.000 133.6351 435.3221
_cons | 51475.25 31314.84 1.644 0.105 -10980.24 113930.7
------------------------------------------------------------------------------
23
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
. reg COST N OCC NOCC
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 3, 70) = 49.64
Model | 1.0009e+12 3 3.3363e+11 Prob > F = 0.0000
Residual | 4.7045e+11 70 6.7207e+09 R-squared = 0.6803
---------+------------------------------ Adj R-squared = 0.6666
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 81980
------------------------------------------------------------------------------
. reg COST N
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 1, 72) = 46.82
Model | 5.7974e+11 1 5.7974e+11 Prob > F = 0.0000
Residual | 8.9160e+11 72 1.2383e+10 R-squared = 0.3940
---------+------------------------------ Adj R-squared = 0.3856
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 1.1e+05
------------------------------------------------------------------------------
24
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
. reg COST N OCC NOCC
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 3, 70) = 49.64
Model | 1.0009e+12 3 3.3363e+11 Prob > F = 0.0000
Residual | 4.7045e+11 70 6.7207e+09 R-squared = 0.6803
---------+------------------------------ Adj R-squared = 0.6666
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 81980
------------------------------------------------------------------------------
. reg COST N
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 1, 72) = 46.82
Model | 5.7974e+11 1 5.7974e+11 Prob > F = 0.0000
Residual | 8.9160e+11 72 1.2383e+10 R-squared = 0.3940
---------+------------------------------ Adj R-squared = 0.3856
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 1.1e+05
------------------------------------------------------------------------------
. reg COST N
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 1, 72) = 46.82
Model | 5.7974e+11 1 5.7974e+11 Prob > F = 0.0000
Residual | 8.9160e+11 72 1.2383e+10 R-squared = 0.3940
---------+------------------------------ Adj R-squared = 0.3856
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 1.1e+05
------------------------------------------------------------------------------
26
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
. reg COST N OCC NOCC
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 3, 70) = 49.64
Model | 1.0009e+12 3 3.3363e+11 Prob > F = 0.0000
Residual | 4.7045e+11 70 6.7207e+09 R-squared = 0.6803
---------+------------------------------ Adj R-squared = 0.6666
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 81980
------------------------------------------------------------------------------
. reg COST N
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 1, 72) = 46.82
Model | 5.7974e+11 1 5.7974e+11 Prob > F = 0.0000
Residual | 8.9160e+11 72 1.2383e+10 R-squared = 0.3940
---------+------------------------------ Adj R-squared = 0.3856
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 1.1e+05
------------------------------------------------------------------------------
. reg COST N
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 1, 72) = 46.82
Model | 5.7974e+11 1 5.7974e+11 Prob > F = 0.0000
Residual | 8.9160e+11 72 1.2383e+10 R-squared = 0.3940
---------+------------------------------ Adj R-squared = 0.3856
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 1.1e+05
------------------------------------------------------------------------------
28
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
. reg COST N OCC NOCC
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 3, 70) = 49.64
Model | 1.0009e+12 3 3.3363e+11 Prob > F = 0.0000
Residual | 4.7045e+11 70 6.7207e+09 R-squared = 0.6803
---------+------------------------------ Adj R-squared = 0.6666
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 81980
------------------------------------------------------------------------------
. reg COST N
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 1, 72) = 46.82
Model | 5.7974e+11 1 5.7974e+11 Prob > F = 0.0000
Residual | 8.9160e+11 72 1.2383e+10 R-squared = 0.3940
---------+------------------------------ Adj R-squared = 0.3856
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 1.1e+05
------------------------------------------------------------------------------
. reg COST N
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 1, 72) = 46.82
Model | 5.7974e+11 1 5.7974e+11 Prob > F = 0.0000
Residual | 8.9160e+11 72 1.2383e+10 R-squared = 0.3940
---------+------------------------------ Adj R-squared = 0.3856
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 1.1e+05
------------------------------------------------------------------------------
30
ФИКТИВНЫЕ ПЕРЕМЕННЫЕ ДЛЯ КОЭФФИЦИЕНТА НАКЛОНА
. reg COST N OCC NOCC
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 3, 70) = 49.64
Model | 1.0009e+12 3 3.3363e+11 Prob > F = 0.0000
Residual | 4.7045e+11 70 6.7207e+09 R-squared = 0.6803
---------+------------------------------ Adj R-squared = 0.6666
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 81980
------------------------------------------------------------------------------
. reg COST N
Source | SS df MS Number of obs = 74
---------+------------------------------ F( 1, 72) = 46.82
Model | 5.7974e+11 1 5.7974e+11 Prob > F = 0.0000
Residual | 8.9160e+11 72 1.2383e+10 R-squared = 0.3940
---------+------------------------------ Adj R-squared = 0.3856
Total | 1.4713e+12 73 2.0155e+10 Root MSE = 1.1e+05
------------------------------------------------------------------------------
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть