Разделы презентаций


Функция y = x 2 и её график

Содержание

«Величие человека в его способности мыслить»

Слайды и текст этой презентации

Слайд 1 Функция y = x2

и её график


Урок алгебры в 7 классе.

Функция y = x2      и её график

Слайд 2 «Величие человека в его способности мыслить»



Блез Паскаль
«Величие человека в его способности мыслить»

Слайд 3Фалес:
- Что есть больше всего на свете?
- Пространство.
Что быстрее

всего?
Ум.
Что мудрее всего?
Время.
Что приятнее всего?
Достичь желаемого результата.


Фалес:- Что есть больше всего на свете? - Пространство.Что быстрее всего?Ум.Что мудрее всего? Время. Что приятнее всего?

Слайд 4 (2;-2)


(- 2;2)


(1;2)
(-2; 2)
(-1;1)
(1;-1)
(2;2)


- Что быстрее всего? – Ум.
Что мудрее всего? - Время.
Что приятнее всего? – Достичь желаемого результата.

Ф








- Что быстрее всего? – Ум.
Что мудрее всего? - Время.
Что приятнее всего? – Достичь желаемого результата.

У








- Что быстрее всего? – Ум.
Что мудрее всего? - Время.
Что приятнее всего? – Достичь желаемого результата.

Н








- Что быстрее всего? – Ум.
Что мудрее всего? - Время.
Что приятнее всего? – Достичь желаемого результата.

К








- Что быстрее всего? – Ум.
Что мудрее всего? - Время.
Что приятнее всего? – Достичь желаемого результата.

Ц








- Что быстрее всего? – Ум.
Что мудрее всего? - Время.
Что приятнее всего? – Достичь желаемого результата.

И








- Что быстрее всего? – Ум.
Что мудрее всего? - Время.
Что приятнее всего? – Достичь желаемого результата.

Я








- Что быстрее всего? – Ум.
Что мудрее всего? - Время.
Что приятнее всего? – Достичь желаемого результата.

(2;-2)            (- 2;2)

Слайд 5Объясните термины
Функция
Область определения
Аргумент
График функции
Линейная функция

Объясните терминыФункцияОбласть определенияАргументГрафик функцииЛинейная функция

Слайд 6

Укажите
область определения функции:
y = 16 – 5x


х ≠ 0

х ≠ 7

х – любое число

Укажите область определения функции:y = 16 –

Слайд 7 Зависимость площади квадрата

от длины его стороны
квадратичная функция
Зависимая
переменная
Независимая
переменная
y = x2
y


x

Зависимость площади квадрата         от длины его стороныквадратичная

Слайд 8 Функция y = x2

и её график


Функция y = x2      и её график

Слайд 9Цели урока:
рассмотреть график и свойства функции у = х2 ;
научиться

строить и «читать» график данной функции.

Цели урока:рассмотреть график и свойства функции у = х2 ;научиться строить и «читать» график данной функции.

Слайд 10Ключом ко всякой науке является вопросительный знак?


Оноре де Бальзак

Ключом ко всякой науке является вопросительный знак?Оноре де Бальзак

Слайд 11 Функция y = x2

Математическое исследование

Функция y = x2Математическое исследование

Слайд 12Заполните таблицу значений функции y = x2:

Заполните таблицу значений функции y = x2:

Слайд 13 Постройте
график


функции y = x2
парабола

Постройте      график  функции y = x2парабола

Слайд 14 Древнегреческий математик

Аполлоний Пергский

(  Перге, 262 до н.э. — 190 до н.э.) 
разрезав конус, линию среза назвал параболой, что в переводе с греческого означает «приложение» или «притча», о чём математик и написал в восьмитомнике «Конические сечения».
И долгое время параболой называли лишь линию среза конуса, пока не появилась квадратичная функция.

Историческая справка

Древнегреческий математик          Аполлоний

Слайд 15 Траектория камня, брошенного под углом к горизонту

Знаете ли вы?

Траектория камня,  брошенного под углом к горизонту  Знаете ли вы?

Слайд 16 Перевал Парабола
Невероятно,

но факт!

Перевал Парабола   Невероятно,   но факт!

Слайд 17 Свойства функции y = x2

Свойства функции y = x2

Слайд 18Область определения функции :
х – любое число.

Область

значений функции:
все значения у ≥ 0.

Область определения функции :   х – любое число.Область значений функции:  все значения у ≥

Слайд 19Если х = 0, то у = 0.

График функции проходит через начало координат.

Если х = 0, то у = 0.    График функции проходит через начало координат.

Слайд 20Если х ≠ 0,

то у > 0.

Все точки графика
функции, кроме точки
(0; 0), расположены
выше оси х.

I

II

Если х ≠ 0,           то у >

Слайд 21Противоположным значениям х соответствует одно и то же значение у.

График функции симметричен относительно оси ординат.


(- х)2 = х2

при любом х
Противоположным значениям х соответствует одно и то же значение у.  График функции симметричен относительно оси ординат.(-

Слайд 22Геометрические свойства параболы
Обладает симметрией
Ось разрезает параболу на две части: ветви

параболы
Точка (0; 0) – вершина параболы
Парабола касается оси абсцисс
Ось симметрии

Геометрические свойства параболыОбладает симметриейОсь разрезает параболу на две части: ветви параболыТочка (0; 0) – вершина параболыПарабола касается

Слайд 23«Знание – орудие,

а не цель»

Л. Н. Толстой

Найдите у, если:



х ≈ -2,5
х = - 2

у ≈ 1,9
у ≈ 6,7
у ≈ 9,6


х = 1,4

х = - 2,6
х = 3,1


у = 6
у = 4


Найдите х, если:



- 1,4




- 3,1



х ≈ 2,5
х = 2

«Знание – орудие,         а не цель»

Слайд 24 Найдите
несколько значений

х, при которых значения функции :
меньше 4

больше 4

Найдите  несколько значений х, при которых значения функции :

Слайд 25При каких значениях а точка Р(а; 64) принадлежит графику функции

у = х2.






Принадлежит ли графику функции у =

х2 точка:






Не выполняя вычислений, определите, какие из точек не принадлежат графику функции у = х2:






P(-18; 324)






R(-99; -9081)






S(17; 279)






(-1; 1)






(0; 8)






(-2; 4)






(3; -9)






(1,8; 3,24)






(16; 0)






а = 8; а = - 8






принадлежит






не принадлежит






не принадлежит






При каких значениях а точка Р(а; 64) принадлежит графику функции у = х2.  Принадлежит ли графику

Слайд 26 Решите графически уравнение:

х2 = 5


х2 = - 1



x2 = х +1


y = - 1


y = x + 1


y = х2

y = 5

нет решений

х ≈ - 2,2; х ≈ 2,2

х ≈ - 0,6; х ≈ 1,6

Решите графически   уравнение:     х2 = 5   х2 =

Слайд 27Цели урока:
рассмотреть график и свойства функции у = х2 ;
научиться

строить и «читать» график данной функции.

Цели урока:рассмотреть график и свойства функции у = х2 ;научиться строить и «читать» график данной функции.

Слайд 28 Я узнал …
Я почувствовал ….
Я увидел….
Я сначала испугался, а

потом ….
Я заметил, что ….
Я сейчас слушаю и думаю …..
Мне

интересно следить за ….

Я узнал …Я почувствовал ….Я увидел….Я сначала испугался, а потом ….Я заметил, что ….Я сейчас слушаю

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика