Разделы презентаций


How many ways are there to tile a rectangle with polyominoes?

Содержание

Enumerative combinatorics Game problemsPartition and tiling problemsMonte Carlo methodBuffon’s needleGalton boardTiling of a planeGraphs and polyominoes on a lattice

Слайды и текст этой презентации

Слайд 1How many ways are there to tile a rectangle with

polyominoes?
Aleksandrov N.M., Askerova A.A., Dzhuraev A.A., Kaniber V.V., Kruzhkov D.O.,

Raeva A.A., Stolbova V.A.

Bauman Moscow State Technical University, Moscow, Russia
How many ways are there to tile a rectangle with polyominoes? Aleksandrov N.M., Askerova A.A., Dzhuraev A.A.,

Слайд 2Enumerative combinatorics
Game problems
Partition and tiling problems
Monte Carlo method
Buffon’s needle
Galton

board
Tiling of a plane
Graphs and polyominoes on a lattice

Enumerative combinatorics Game problemsPartition and tiling problemsMonte Carlo methodBuffon’s needleGalton boardTiling of a planeGraphs and polyominoes on

Слайд 3Random walks on a lattice
If some atoms fit into two

squares with adjacent sides, a “spring” appears between them.
Percentage of

draws

Number of springs

Random walks on a latticeIf some atoms fit into two squares with adjacent sides, a “spring” appears

Слайд 4Example:
n1=2, n2=4, n3=2, n4=3
 
Generalize the results for:
three-dimensional space:

d=3
lattice with holes
surface of a “g” kind containing the lattice

General

case: different connection types

Aim:
finding the statistical weight for macrostates n1, n2, n3, n4
n1: a spring between an outer node of primitive 1 and an inner node of primitive 2
n2: a spring between an inner node of primitive 1 and an outer node of primitive 2
n3: a spring between an inner node of primitive 1 and an inner node of primitive 2
n4: a spring between an outer node of primitive 1 and an outer node of primitive 2

Example: n1=2, n2=4, n3=2, n4=3 Generalize the results for: three-dimensional space: d=3lattice with holessurface of a “g” kind

Слайд 5Statistical weight problem for a system of graphs embedded in

square lattice
1
2

N
1
2

M
M x N nodes
M x N squares
N\M
2
1

1
2

(n1,n2,n3)=(6,2,4)

Statistical weight problem for a system of graphs embedded in square lattice 12…N12…MM x N nodesM x

Слайд 6Applications in chemistry. Thermodynamic Considerations for Polymer Solubility
where
W is the number

of possible arrangements within the lattice,
k is the Boltzmann constant.
DS

= k ln W

polymer solute

low molecular weight solute

Two-dimensional lattice model of solubility

Applications in chemistry. Thermodynamic Considerations for Polymer Solubility whereW is the number of possible arrangements within the

Слайд 7Polyomino representation

Polyomino representation

Слайд 81
2
12
13
14
123
124
1234
1235
1236
12345
12356
123456
1245
1246
125
134
1256
126
23
25
235
2356
6
5
1
4
2
3
0
1
6
5
1
4
2
3
0
2
6
5
4
3
0
12
6
5
4
0
123
5
3
0
1246
6
4
3
0
125
1
4
0
2356
0
123456
Enumerating polyomino configurations

121213141231241234123512361234512356123456124512461251341256126232523523566514230165142302654301265401235301246643012514023560123456Enumerating polyomino configurations

Слайд 9From graphs to polyominoes
A polyomino is a plane geometric figure

formed by joining equal squares.
A graph covering of a

lattice is equivalent to a tiling of an area with polyominoes.

Suppose a (kxh)*(nxh) field, r monominoes and b L-minoes are given.
Enclose every polyomino into a hxh field and consider it as a whole.
The size of the initial field changes to kxn.

From graphs to polyominoesA polyomino is a plane geometric figure formed by joining equal squares. A graph

Слайд 10.

Polyomino adjacency cases

hxh field
Calculating the number of possible adjacencies

(P)
c is a number of pairs
a number of

ways to place squares
not belonging to any pair
. Polyomino adjacency caseshxh fieldCalculating the number of possible adjacencies (P) c is a number of pairs

Слайд 11Direct method of counting partitions
Suppose a MxN stripe and a

set of polyominoes are given.
Construct all the possible partitions

of the stripe, where a monomino, that is 1x1 a square, is denoted by z, graphically.

Tiling of a 2x14 stripe with L-minoes and dominoes

Introduced methods

Direct method of counting partitionsSuppose a MxN stripe and a set of polyominoes are given. Construct all

Слайд 12L-minoes and dominoes on a 2xn stripe

=
=

L-minoes and dominoes on a 2xn stripe==

Слайд 13Calculation of infinite sums

Calculation of infinite sums

Слайд 14Obtaining the generating function

Obtaining the generating function

Слайд 15Generating functions for some other partitions
1xn stripe
Domino
Triomino
Domino + Triomino
2xn stripe
Domino
Triomino
L-mino

+ Triomino
L-mino
3xn stripe
Domino
Triomino
n
n
n

Generating functions for some other partitions1xn stripeDominoTriominoDomino + Triomino2xn stripeDominoTriominoL-mino + TriominoL-mino3xn stripeDominoTriominonnn

Слайд 16Indirect method of counting partitions
#
#
#

Indirect method of counting partitions###

Слайд 17. . .
n-1
n
. . .
n-2
n
j
. . .
n-j
j
. . .
n-j
n
n
. .

.
n
2
2
1,
1
[ n=0 ]
[n=0]
1
Derivation of the generating function

. . .n-1n. . .n-2nj. . .n-jj. . .n-jnn. . .n221,1[ n=0 ][n=0]1Derivation of the generating function

Слайд 18Partitions of the 3xn field
11 partitions
9 results
2
2
2
,
,
multiplication

Partitions of the 3xn field11 partitions9 results222,,multiplication

Слайд 19n=2
n=2
n=2
n=2
,
,
,
,
,
,
,
,
,
Partition of the 3x4 field
2
2

n=2n=2n=2n=2,,,,,,,,,Partition of the 3x4 field22

Слайд 21Kasteleyn’s formula for the number of perfect matchings in a

planar graph G
Pfaffian method
Pfaffian orientation
Let A denote the signed

adjacency matrix of G. This means that
• Aij = 0 if no edge joins vi to vj .
• Aij = 1 if the edge joining vi to vj is oriented from vi to vj .
• Aij = −1 if the edge joining vi to vj is oriented from vj to vi .
A perfect matching of G is a collection of edges e1, ..., en of G such that every vertex belongs to exactly one ej .
Let P(G) denote the number of distinct perfect matchings of G. Then

The matrix A is called skew-symmetric if Aij = −Aji for all i, j. A is skew-symmetric.
Let A be a 2n × 2n skew-symmetric matrix. The Pfaffian of A is defined as the sum taken over all permutations of the set {1, ..., 2n}.



Given Muir’s Identity, Kastelyn’s Theorem can be reformulated as follows.
Let G be a graph equipped with any Pfaffian orientation. Let A be the corresponding signed adjacency matrix. Then

Muir’s Identity

1

1 Kastelyn’s Formula for Perfect Matchings. Rich Schwartz

Ways to tile a MxN field with dominoes

Kasteleyn’s formula for the number of perfect matchings in a planar graph GPfaffian methodPfaffian orientation Let A

Слайд 224 binary operations:
3 unary operations:

– without

forming a spring
– with forming a

horizontal spring
– with forming a vertical spring
– with forming both horizontal and vertical springs


– mirroring
– rotation
– translation

Coloured digraphs method

χ

γ↑

γ

R

T

M

4 binary operations:3 unary operations:    – without forming a spring    –

Слайд 23Properties of unary and binary operations

Properties of unary and binary operations

Слайд 25Relation between coloured graphs and partitions
T
γ↑
γ
R
χ
T
χ
γ
γ
χ
χ
T
T
χ
γ
χ
χ
γ
R

χ
γ↑
M

Relation between coloured graphs and partitionsTγ↑γRχTχγγχχTTχγχ χγR χ γ↑M

Слайд 26Tiling a rectangular m×n field
χ
R
χ
R
χ
n-1
n-1
n-1
m-1
χ
R
χ
R
χ
n-1
n-1
n-1
m-2
χ
n
T
χ
n-1
m-1
χ
n
T
The number of all possible partitions

of a MxN field into arbitrary tiles is

2MN-M-N

Tiling a rectangular m×n fieldχRχRχn-1n-1n-1m-1χRχRχn-1n-1n-1m-2χnTχn-1m-1χnTThe number of all possible partitions of a MxN field into arbitrary tiles

Слайд 27Partitions of a MxN field into arbitrary tiles
M
N
M-1
N-1

Partitions of a MxN field into arbitrary tiles MNM-1N-1

Слайд 28Aims & perspectives
Algebraization of the tiling problem
Finding a method applicable

to the whole class of similar problems
Cluster characterization (coloured digraphs

method)
Forming clusters from different primitive sets
Distinguishing between clusters
Deriving the structural complexity of a cluster

Conclusion

Aims & perspectivesAlgebraization of the tiling problemFinding a method applicable to the whole class of similar problemsCluster

Слайд 29Connection with modern art
Robert Delaunay. City. 1910
Georges Braque. Mandora.1909-10
Pablo Picasso. Harlequin with Violin.

1918

Connection with modern artRobert Delaunay. City. 1910Georges Braque. Mandora.1909-10Pablo Picasso. Harlequin with Violin. 1918

Слайд 30Evolution of primitive geometric shapes
Searching for rhythmical structures – investigating

adjacent/non-adjacent squares on a lattice
Paul Klee. Personal diaries, 1921-1931.
Investigating colour

schemes
Evolution of primitive geometric shapesSearching for rhythmical structures – investigating adjacent/non-adjacent squares on a latticePaul Klee. Personal

Слайд 31Musical combinatorics
Two full octaves of the 12-tone equal-tempered scale, in

three different musical representations: Notes on the musical staff, letter

names and keys on the piano keyboard.

The 12 musical notes repeat in a cyclic fashion, and therefore can be represented as 12 positions on a circle.

Michael Keith. From Polychords to Polya. Adventures in Musical Combinatorics. 1991. Vinculum Press, Princenton.

Musical combinatoricsTwo full octaves of the 12-tone equal-tempered scale, in three different musical representations: Notes on the

Слайд 32George Frideric Handel, Hallelujah Chorus, from Messiah (1741)
Ludwig van Beethoven,

Piano Sonata Op. 79 (1808)
Claude Debussy, L’Apres-Midi d’un Faune (1892)
George

Crumb, Makrocosmos Vol. 1 (1972)

Chords

Michael Keith. From Polychords to Polya. Adventures in Musical Combinatorics. 1991. Vinculum Press, Princenton.

is the number of n-note chords in a scale of L notes having exactly a adjacencies

Graphs of a(t) for excerpts from several compositions

George Frideric Handel, Hallelujah Chorus, from Messiah (1741)Ludwig van Beethoven, Piano Sonata Op. 79 (1808)Claude Debussy, L’Apres-Midi

Слайд 33Lattice model in music
1/4
The lattice you have seen at the

beginning represents a fragment from Debussy’s “Mazurka”.
Here, the t-axis shows

the note value. Red squares stand for the treble clef notes, blue squares – for the bass clef notes.
Here, we do not distinguish octaves.
Lattice model in music1/4The lattice you have seen at the beginning represents a fragment from Debussy’s “Mazurka”.Here,

Слайд 34Enumerative combinatorics
Game problems
Partition and tiling problems
Monte Carlo method
Buffon’s needle
Galton

board
Tiling of a plane
Graphs and polyominoes on a lattice

Enumerative combinatorics Game problemsPartition and tiling problemsMonte Carlo methodBuffon’s needleGalton boardTiling of a planeGraphs and polyominoes on

Слайд 35Thank you for your attention!

Thank you  for  your attention!

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика