Слайд 1Корпоративные финансы
Виталий Валерьевич Ковалев
СПбГУ, кафедра теории кредита и финансового
менеджмента
тел.: (812) 272-7821
сайт: http://www.tcfm.ru
Тема 6. Методы оценки капитальных
финансовых активов (4 часа)
Слайд 2В. Ковалев: СF-06
Определение (МСФО)
Финансовый актив:
(а) денежные средства;
(б)
договорное право требования денежных средств или другого ФА от другой фирмы;
(в) договорное право на обмен финансовых инструментов с другой фирмой на потенциально выгодных условиях;
(г) долевой инструмент другой компании.
Слайд 3В. Ковалев: СF-06
Причины
Причины работы с FA:
(а) выход на рынок капитала в поисках дополнительных источников;
(б) хеджирование (т.е. страхование от возможных потерь);
(в) спекулирование;
(г) страховой запас высоко ликвидных активов
Слайд 4В. Ковалев: СF-06
Базовые характеристики ФА
Основные характеристики финансового актива как
элемента рынка:
{ стоимость, цена, доходность, риск }.
Четыре стоимостные характеристики:
ценность,
стоимость (Vt),
цена (Pm),
себестоимость.
Vt - рассчитывается; Pm - декларируется.
Слайд 5В. Ковалев: СF-06
Базовые характеристики ФА
Ценность (маржинализм: оценка со стороны
спроса, т. е. потребителя) и стоимость (классическая п/э: оценка со
стороны предложения) близки.
«Мера, в которой капитал и труд меняются друг на друга, составляет их ценность; мера же, в которой они обмениваются на деньги, составляет их цену» (Ж.-Г.Курсель-Сенель).
Слайд 6В. Ковалев: СF-06
Стоимостные характеристики ФА (11)
1) Нарицательная стоимость – стоимостная
оценка ФА, официально закрепленная за ним условиями эмиссии.
2) Цена
размещения, или эмиссионная цена – цена, по которой ФА размещается, т.е. продается на первичном рынке.
3) Ликвидационная стоимость – стоимость, по которой, как полагают, можно продать некоторый актив (понуждающие факторы: есть/нет).
Слайд 7В. Ковалев: СF-06
Стоимостные характеристики ФА – 2
4) Балансовая стоимость
– стоимостная оценка ФА, исчисляемая по данным ББ.
5) Конверсионная стоимость
– произведение Pm базисного актива (обычно это обыкновенная акция того же эмитента), лежащего в основе конвертации, и коэффициента конверсии.
6) Внутренняя (теоретическая, фундаментальная) стоимость – стоимость, исчисленная по DCF-модели.
Слайд 8В. Ковалев: СF-06
Стоимостные характеристики ФА – 3
7) Выкупная цена
– цена, по которой производится выкуп ФА эмитентом по истечении
предусмотренного срока его жизни или до этого момента, если это предусмотрено условиями эмиссии.
8) Рыночная, или курсовая, цена – цена, по которой ФА продается на данном рынке. Pm зависит от конъюнктуры рынка, рыночной нормы прибыли, величина и динамика дохода, генерируемого активом, и др.
Слайд 9В. Ковалев: СF-06
Стоимостные характеристики ФА – 4
9) Экс-дивидендная цена
(ex-dividend price, ex-div) – цена акции, покупка по которой не
дает права на получение последнего объявленного, но еще не выплаченного дивиденда (синоним – цена без дивиденда).
В развитых экономиках: обычно акции начинают продаваться по цене ex-div за четыре дня до составления списка лиц, имеющих право на получение очередного дивиденда.
Слайд 10В. Ковалев: СF-06
Стоимостные характеристики ФА – 5
10) Цена с
включенным дивидендом (cum-dividend price, cum-div) – цена акции, купив которую,
акционер приобретает права на все дивиденды, включая последний объявленный, но не выплаченный дивиденд.
cum-div = ex-div + ближайший ожидаемый D.
Появляется непосредственно перед выплатой D.
Переход от ex-div к cum-div – кратковременно.
Цена ex-div рассчитывается по DCF-модели и отражает долгосрочные ожидания.
Слайд 11В. Ковалев: СF-06
Стоимостные характеристики ФА – 6
11) Справедливая стоимость
(fair value) – характеристика объекта, определяющая его сравнительную значимость в
потенциальных или фактических меновых операциях в условиях полной информированности участников сделки, их неангажированности и свободы в принятии решения.
Слайд 12В. Ковалев: СF-06
Стоимостные характеристики ФА – 7
Существенные условия сделки
по справедливой стоимости:
(а) независимость сторон;
(б) осведомленность сторон;
(в)
невынужденный характер сделки;
(г) доступность и публичность информации, на основе которой совершается сделка.
Оценка:
fair value = Pm, если есть рынок;
fair value = оценочной стоимости, если рынка нет.
Слайд 13В. Ковалев: СF-06
Логика финансовых операций
Идея: сопоставление рыночной цены (Pm)
и стоимости (Vt).
Различия между Pm и ст Vt:
♧ Vt это расчетный показатель, а Pm– декларированный;
♧ в любой конкретный момент времени на данном рынке Pm однозначна, а Vt многозначна;
♧ Vt первична, а Pm вторична.
Слайд 14В. Ковалев: СF-06
Логика финансовых операций – 2
Цена (Рm) –
это то, что ты платишь, а стоимость (Vt ) –
это то, что ты получаешь (цена очевидна, тогда как приобретенная стоимость неопределенна).
Варианты соотношения:
Рm > Vt или
Рm < Vt или
Рm = Vt
Слайд 15В. Ковалев: СF-06
Подходы к оценке FA:
♧
технократическая теория (Ч. Доу: идея поиска точки перелома тенденции);
♧ фундаменталистская теория (DCF-модель);
♧ теория «ходьба наугад» (Л. Башелье).
Две типовые задачи:
(1) оценка Vt, (2) оценка k.
Фундаменталистский подход преобладает.
Логика оценки Vt – 1
Слайд 16В. Ковалев: СF-06
Логика оценки Vt – 2
Технократический подход
(Доу)
Фундаменталистский подход
(Уильямс,
Коулз)
Теория «ходьбы наугад»
(Башелье)
Время
Vt
t0
Слайд 17В. Ковалев: СF-06
Облигация
Облигация – эмиссионная ценная бумага, закрепляющая право
ее владельца на получение от эмитента облигации в предусмотренный в
ней срок ее номинальной стоимости или иного имущественного эквивалента. Может предусматриваться выплата процента.
Доходом по облигации являются процент и/или дисконт.
Слайд 18В. Ковалев: СF-06
Облигация
Свойства:
(1) дает приоритетное право на получение
процентов до начисления дивидендов;
(2) дает приоритетное право перед собственниками
на получение доли имущества при ликвидации фирмы;
(3) не дает права ее владельцу на управление фирмой.
Слайд 19В. Ковалев: СF-06
Облигация: стоимостные характеристики
нарицательная стоимость;
конверсионная стоимость;
внутренняя
(теоретическая) стоимость;
выкупная цена;
рыночная цена.
Слайд 20В. Ковалев: СF-06
Оценка бескупонной облигации
Vt = CF / (1 +
r)n = CF FM2(r,n)
Пример: Облигации с нулевым купоном
нарицательной стоимостью 1000 руб. и сроком погашения через пять лет продаются за 630,12 руб. Проанализировать целесообразность приобретения этих облигаций, если имеется возможность альтернативного инвестирования с нормой прибыли 12%.
Решение: Vt = 1000 FM2(12%,5) = 1000 0,567 = 567 руб.,
или k = 8,2% < 12%.
Pm
CF=M
Время
0 1 2 3 …
n-1 n n+1
Конец финансовой операции
Начало финансовой операции
Слайд 21В. Ковалев: СF-06
Оценка бессрочной облигации
Vt = PV = CF /
r
Пример
Найти Vt бессрочной облигации, если выплачиваемый по ней
годовой доход составляет 1 тыс. руб., а рыночная норма прибыли – 18%.
Решение
Vt = 1000 : 0,18 = 5555,6 руб. По мере изменения рыночной нормы прибыли цена облигации будет меняться.
0 1 2 3 4 5 … Время
CF CF CF CF …
Начало финансовой операции
Vt = PV
Слайд 22В. Ковалев: СF-06
Облигация срочная без права досрочного погашения
0
1
2 3 … n-1 n n+1
M
CF=A A A … A A
Начало финансовой операции
Конец финансовой операции
Vt = PV
Слайд 23В. Ковалев: СF-06
Облигация безотзывная
Пример
Рассчитать рыночную цену облигации нарицательной стоимостью
1000 руб., купонной ставкой 15% годовых и сроком погашения через
четыре года, если рыночная норма прибыли (km) по финансовым инструментам такого класса равна 10%. Процент по облигации выплачивается дважды в год.
0 1 2 3 4 5 6 7 8 9
CF=75
M=1000
Vt = Pm
Конец операции
Слайд 24В. Ковалев: СF-06
Облигация безотзывная (решение)
(1) km = 10% Рm
= Vt = 75 6,463 + 1000 0,677
=
= 1162 руб.
(2) km = 18% Vt = CF FM4(9%,8) + M FM2(9%,8) =
= 75 5,535 + 1000 0,502 = 917 руб.
(3) km = 15% Рm = Vt = 1000 руб.
Слайд 25В. Ковалев: СF-06
Отзывная облигация
Две дополнительные характеристики:
(1) выкупная цена Pc, выплачиваемая
в случае досрочного ее погашения;
(2) срок защиты от досрочного погашения
(первые m базисных периодов с момента эмиссии, в течение которых отзыв облигации с рынка запрещен).
Две оценки Vt: досрочное погашение (1) мало вероятно; (2) весьма вероятно.
Слайд 26В. Ковалев: СF-06
Отзывная облигация
Базовая модель оценки
где: n – число базисных
периодов до окончания срока защиты;
М –
выкупная цена.
Слайд 27В. Ковалев: СF-06
Отзывная срочная купонная облигация с постоянным доходом
Досрочное
погашение: (1) мало вероятно; (2) весьма вероятно.
M
CF = C
Конец финансовой
операции
0 1 2 3 4 5 6 7 8 9
Vt = PV
CF = C
Конец финансовой операции
0 1 2 3 4 5 6 7 8 9
Vt = PV
Pc
Вариант 1
Вариант 2
Слайд 28В. Ковалев: СF-06
Отзывная облигация (пример)
Отзывная облигация номиналом 1000 долл., с
купонной ставкой 12% и ежегодной выплатой процентов будет погашена через
10 лет. На момент анализа облигация имеет защиту от досрочного погашения в течение пяти лет. В случае досрочного отзыва выкупная цена в первый год, когда отзыв становится возможным, будет равна номиналу плюс сумма процентов за год. Стоит ли приобрести эту облигацию, если ее текущая рыночная цена составляет 920 долл., а приемлемая норма прибыли равна 14%?
Слайд 29В. Ковалев: СF-06
Отзывная облигация (решение примера)
(а) Оценка с позиции инвестора,
который полагает, что вероятность досрочного погашения очень мала.
Vt =
120 FM4(14%,10) + 1000 FM2(14%,10) = 120 5,216 + 1000 0,270 = 895,92 долл.
С позиции данного инвестора текущая цена облигации завышена, поэтому ее покупка нецелесообразна (Рm > Vt).
Слайд 30В. Ковалев: СF-06
Отзывная облигация (решение примера)
(б) Оценка с позиции инвестора,
который полагает, что вероятность досрочного погашения достаточно велика.
Vt =
120 FM4(14%,5) + 1120 FM2(14%,5) = 120 3,433 + 1120 0,519 = 993,24 долл.
С позиции данного инвестора текущая цена облигации занижена, поэтому ее покупка целесообразна (Рm < Vt).
Слайд 31В. Ковалев: СF-06
Акции
Долевые ценные бумаги – акции (привилегированные и обыкновенные).
Привилегированная
акция – бессрочный аннуитет:
Vt = A / r (**)
где r – ставка дисконтирования (внешний параметр).
Обыкновенная акция:
(1) дивиденды не меняются;
(2) дивиденды возрастают с постоянным темпом прироста;
(3) дивиденды возрастают с изменяющимся темпом прироста.
Слайд 32В. Ковалев: СF-06
Акции (постоянно возрастающий дивиденд)
Модель Гордона
где Vt – теоретическая
стоимость акции;
D0 – последний выплаченный дивиденд;
D1 – первый ожидаемый дивиденд;
r – приемлемая доходность (ставка дисконтирования);
g – ожидаемый темп прироста дивидендов.
0 1 2 3 …
D0 D1 D2 D3 …
Время
Vt=PV
Слайд 33В. Ковалев: СF-06
Динамика дивидендов при выделении двух фаз изменения
0
1
2 … k-1 k k+1 k+2 k+3 Годы
D1 D2 … Dk-1 Dk Dk+1 Dk+2 Dk+3 …
Фаза бессистемного изменения дивиденда
Фаза равномерного роста дивиденда
Начало операции
Vt
Vt =PV
…
Слайд 34В. Ковалев: СF-06
Пример
В течение последующих четырех лет компания планирует выплачивать
дивиденды соответственно 1,5; 2; 2,2; 2,6 долл. на акцию. Ожидается,
что в дальнейшем дивиденд будет увеличиваться равномерно с темпом 4% в год. Рассчитать теоретическую стоимость акции, если rm = 12%.
Решение
Величина ожидаемого дивиденда пятого года будет равна:
2,6 1,04 = 2,7 долл.
Итак, в условиях эффективного рынка акции данной компании на момент оценки должны продаваться по цене, примерно равной 27,62 долл.