Слайд 1Московский инженерно-физический институт
(государственный университет)
ФАКУЛЬТЕТ ЭКСПЕРИМЕНТАЛЬНОЙ
И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ
Кафедра №37
«ЛАЗЕРНАЯ
ФИЗИКА»
ЛАЗЕРНАЯ
ТЕХНОЛОГИЯ
Лекция-15
Слайд 2ЛАЗЕРНАЯ ХИМИЯ.
В области лазерной химической технологии можно выделить следующие разделы:
Лазерное
разделение изотопов.
Лазерное получение особо чистых веществ.
Лазерный синтез.
Лазерная технология поверхности.
Стереолитография.
Слайд 3Лазерное разделение изотопов
Для разделения изотопов можно использовать хорошо известное явление
увеличения
реакционной способности атомов и молекул при поглощении
фотона, т.е. при фотовозбуждении.
Все методы, основанные на химических реакциях возбужденных частиц называют фотохимическими. С другой стороны, селективно--возбужденные атомы и молекулы имеют меньшую энергию ионизации и диссоциации, чем невозбужденные и, следовательно, могут быть ионизованы или диссоциированы лазерным излучением. Такой подход к разделению изотопов называется фотофизическим.
Впервые фотохимическое разделение изотопов ртути, основанное на селективном увеличении скорости реакции тех или иных изотопов ртути с кислородом при их возбуждении было осуществлено в 1937 г.
Однако, этот опыт исключителен, т.к. у ртути есть триплетные метастабильные состояния, а также для возбуждения можно было использовать ртутные лампы с мощными линиями испускания. Естественно, что в до - лазерную эпоху разделить изотопы другихэлементов фотовозбуждением было принципиально невозможно.
Гораздо более универсален и гибок фотофизический подход, основанный
на способности интенсивного лазерного излучения селективно переводить значительную часть атомов в любое заданное возбужденное состояние, который может быть реализован только с помощью лазерного излучения.
Слайд 4Схемы лазерного разделения изотопов
1. Инициируемые лазером химические реакции:
Для удобства введем
ряд условных обозначений:
Слайд 5Схемы лазерного разделения изотопов
5. Фотоизомеризация
2. Однофотонная предиссоциация
3. Двухфотонная диссоциация
4. Многофотонная
диссоциация
Слайд 6Схемы лазерного разделения изотопов
7. Отклонение атомарного (молекулярного) пучка:
6. Двухступенчатая фотоионизация
Для
молекул: Для атомов:
Слайд 7Лазерное разделение изотопов
Коэффициент обогащения
Рассмотрим смесь компонентов, содержащую смесь изотопов Ai
и An в атомарном Ai,n или молекулярном Ai,nB состояниях.
Пусть [N
Ai]0 и [N An]0 -- начальные концентрации компонентов изотопов Ai и An в смеси. После облучения лазерным излучением в смеси возникает продукт реакции в виде атомарного или молекулярного состояния с другим изотопическим составом с
соответствующими концентрациями [N AiR]f и [N AnR]f . Тогда
коэффициентом разделения изотопов, или, другими словами,
коэффициентом обогащения называется величина:
При β = 1 разделение отсутствует. Эффективный процесс
разделения требует значений β >> 1. На практике с помощью
лазерного облучения достигнуты значения коэффициента обогащения β ~ 104
Слайд 8Лазерное разделение изотопов
Инициируемые лазером реакции
Разделение изотопов может произойти в том
случае, если скорость реакции возбужденных атомов или молекул с определенным
реагентом превышает скорость реакции атомов или молекул, находящихся в основном состоянии. Селективность процесса обеспечивается возбуждением только одного выбранного изотопа, принимающего участие в последующей фотохимической реакции.
Возбуждение более высокого энергетического состояния еще не гарантирует автоматического протекания реакции. Необходимо, чтобы скорость реакции v* атома или молекулы в возбужденном состоянии с реагентом C превышала не только скорость реакции v атома или молекулы, находящихся в основном состоянии, но и скорости релаксации и резонансной передачи возбуждения атомам или молекулам в
основном состоянии.
Известно, что скорость реакции определяется, как
где k(A,C)-- константа скорости реакции между атомом (молекулой) A и реагентом C, [A], [C]-- концентрации соответственно атомов (молекул) и реагента.
В соответствии с уравнением Аррениуса константа скорости реакции дается выражением:
где ξ - некоторый множитель, Ea- энергия активации, R-- универсальная газовая постоянная.
Слайд 9Лазерное разделение изотопов
Однофотонная предиссоциация
Механизм однофотонной предиссоциации схематически изображен на рисунке.
Поглощение фотона ведет к переходу в связанное состояние, при перекрытии
которого с отталкивательным состоянием может произойти диссоциация. В другом случае диссоциация может быть вызвана соударениями. В данном случае переход происходит на связанный колебательно-вращательный уровень вблизи предела диссоциации. Соударения с другими частицами вызывают диссоциацию молекулы.
Слайд 10Лазерное разделение изотопов
Двухфотонная диссоциация
При двухфотонной диссоциации фотон первого лазера возбуждает
молекулы, содержащие интересующий нас изотоп, а фотон второго лазера вызывает
диссоциацию возбужденных молекул.
Оба фотона могут иметь сопоставимую энергию, или же один фотон может иметь низкую энергию инфракрасная область спектра), а другой - высокую энергию (видимый, или ультрафиолетовый диапазоны).
Схема процесса показана на рисунке.
Слайд 11Лазерное разделение изотопов
Фотоизомеризация
Если молекуле передать некоторое количество колебательной энергии,
то при
отсутствии дезактивирующих соударений молекула может
различными изомерическими состояниями. При затрате на
соударения
части внутренней энергии молекула может перейти в состояние,
характеризующееся тем же самым химическим составом, но другой
структурой. Так как химические свойства образовавшегося изомера
могут отличаться от свойств исходной молекулы, то этот изомер можно
отделить от смеси. Если начальное возбуждение было селективным по
отношению к одному изотопу, то образовавшийся изомер будет обогащен
интересующим нас изотопом.
В общем случае лазерная изомеризация представляет собой потенциально
привлекательный метод разделения изотопов, связанный с
одноступенчатым возбуждением и свободный от конкурирующих реакций.
Однако его применение часто ограничено отсутствием подходящих для
изомеризации молекул.