Поступательное движение – такое движение, при котором любая прямая, связанная с движущимся телом, остается параллельной самой себе.
Вращательное движение - такое движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.
Движение – относительное явление. Для описания движения необходимо условиться, относительно какого другого тела будет отсчитываться перемещение. Совокупность тела отсчета, системы координат и системы измерения времени называется системой отсчета.
Основная задача механики – описание положения тела с течением времени
Зная эту зависимость можно рассчитать скорость, ускорение, потенциальную и кинетическую энергию тела, импульс.
Траектория – кривая, описываемая некоторой точкой при движении. Длина этой кривой – пройденный путь (S).
Перемещение – отрезок, соединяющий начало и конец траектории (r12). Характеризуется длиной и направлением – векторная величина.
Величина, для описания которой достаточно одного числового значения – скалярная величина.
i, j, k - единичные вектора или орты — вектор, длина которых равна единице.
- через длины и угол
- через координаты
вращаем винт от первого множителя ко второму
- обозначение
- длина вектора
- координаты результирующего вектора
Скорость – векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки относительно выбранной системы отсчёта. Предел отношения dr к dt. Касательная к траектории.
В общем случае, в прямоугольной декартовой системе координат, скорость определяется
V1
Пройденный путь
V2
a
Ускорение — векторная физическая величина, определяющая быстроту изменения скорости тела, то есть первая производная от скорости по времени.
В общем случае, в прямоугольной декартовой системе координат, ускорение определяется
Пройденный путь при равнопеременном движении
r1
r2
Δr
ΔS
x
y
V1
V2
a
Δϕ
1
2
0
3
4
υ
υ+Δυ
Δυ
υ+Δυ
ΔS
Δϕ
Δϕ
n’
n
R
R
R
R
ΔS
ΔS/2
Δϕ/2
Δϕ
υ
Δυ
Δυ/2
Δϕ/2
υ+Δυ
1
3
4
0
1
2
τ
Рассмотрим случай криволинейного движения. Ускорением называется изменение скорости, но скорость – векторная величина, а то есть, может изменятся как по величине, так и по направлению.
Рассмотрим движение по окружности радиусом R с постоянной скоростью υ. За время Δt точка сместиться из положения 1 в положение 2, совершив поворот на угол Δϕ и пройдя путь ΔS. Перенесем вектор скорости из точки 2 в точку 1 и найдем разность этих векторов. Получим равнобедренный треугольник 134. Вектор Δυ имеет направление n.
Ускорение можно представить в виде:
Нормальное ускорение - компонента ускорения точки, характеризующая быстроту изменения направления вектора скорости для траектории с кривизной 1/R, направлено к центру кривизны траектории.
При стремлении Δϕ, а значит и ΔS, к нулю, вектор n’ совпадет по направлению с нормалью n (перпендикуляром) к скорости υ.
То же самое сделаем для треугольника 012:
Представим эти выводы в формулу для ускорения:
Нормальное ускорение an - компонента ускорения точки, характеризующая быстроту изменения направления вектора скорости для траектории с кривизной 1/R, направлено к центру кривизны траектории.
τ’
Δυτ
Δυ
Производная произведения. Вторая компонента описывает изменение скорости по направлению, значение было найдено ранее.
Тангенциальное ускорение aτ — компонента ускорения, направленная по касательной к траектории движения. Характеризует изменение модуля скорости.
Вращательно движение
При вращательном движение все точки твердого тела движутся по окружностям, центры которых лежат на общей оси OO. Радиус вектор каждой точки ri за время Δt поворачивается на один и тот же угол Δϕ. При этом пройденный путь ΔSi может быть разным.
Вращательное движение характеризуется угловой скоростью ω.
Угловая скорость – векторная физическая величина, характеризующая изменение углового положения материальной точки относительно центра вращения. Указывает направление вращения и численно равна углу описываемому радиус-вектором точки за единицу времени.
Изменение угловой скорости, как по величине, так и по направлению, характеризуется угловым ускорением:
Вектор углового ускорения β сонаправлен с вектором угловой скорости ω если точка ускоряется, и направлен противоположно, если точка замедляется.
Вектор угловой скорости ω всегда ориентирован вдоль оси вращения.
Направление вектора ω определяется по правилу правого винта: искомый вектор ориентирован по направлению поступательного движения правого винта при его повороте, совпадающем с направлением вращения рассматриваемой точки.
Подставим это выражение в формулу определения скорости:
Полученная взаимосвязь интересна тем, что все три величины уравнения являются векторными: вектор угловой скорости ω направлен по оси, радис-вектор R проводится от оси вращения до точки, линейная скорость υ – касательная к траектории.
Если результатом перемножения двух векторов является третий вектор, ориентированный перпендикулярно плоскости образованной двумя исходными векторами, то такая взаимосвязь описывается векторным произведением:
2
υ
ΔS
Δϕ
R
1
ω
R
0
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть