Разделы презентаций


Machine-Level Programming I: Basics 15-213/18-213 : Introduction to Computer

Содержание

Office HoursNot too well attended (yet?)Ask your TAs about how it was last year…You can choose from coffee, tea, and hot chocolateHere’s where my office is: HH A312The time:

Слайды и текст этой презентации

Слайд 1Machine-Level Programming I: Basics 15-213/18-213: Introduction to Computer Systems 5th Lecture,

January 30, 2018
Instructors:
Franz Franchetti and Seth C. Goldstein

Machine-Level Programming I: Basics  15-213/18-213: Introduction to Computer Systems  5th Lecture, January 30, 2018Instructors: Franz

Слайд 2Office Hours
Not too well attended (yet?)
Ask your TAs about how

it was last year…
You can choose from coffee, tea, and

hot chocolate
Here’s where my office is: HH A312
The time: Tues. 4pm-5pm




https://users.ece.cmu.edu/~franzf/officelocation.htm

Office HoursNot too well attended (yet?)Ask your TAs about how it was last  year…You can choose

Слайд 3Today: Machine Programming I: Basics
History of Intel processors and architectures
Assembly

Basics: Registers, operands, move
Arithmetic & logical operations
C, assembly, machine code

Today: Machine Programming I: BasicsHistory of Intel processors and architecturesAssembly Basics: Registers, operands, moveArithmetic & logical operationsC,

Слайд 4Intel x86 Processors
Dominate laptop/desktop/server market

Evolutionary design
Backwards compatible up until 8086,

introduced in 1978
Added more features as time goes on
Now 3

volumes, about 5,000 pages of documentation
Complex instruction set computer (CISC)
Many different instructions with many different formats
But, only small subset encountered with Linux programs
Hard to match performance of Reduced Instruction Set Computers (RISC)
But, Intel has done just that!
In terms of speed. Less so for low power.
Intel x86 ProcessorsDominate laptop/desktop/server marketEvolutionary designBackwards compatible up until 8086, introduced in 1978Added more features as time

Слайд 5Intel x86 Evolution: Milestones
Name Date Transistors MHz
8086 1978 29K 5-10
First 16-bit Intel processor. Basis for IBM

PC & DOS
1MB address space
386 1985 275K 16-33
First 32 bit Intel processor ,

referred to as IA32
Added “flat addressing”, capable of running Unix
Pentium 4E 2004 125M 2800-3800
First 64-bit Intel x86 processor, referred to as x86-64
Core 2 2006 291M 1060-3333
First multi-core Intel processor
Core i7 2008 731M 1600-4400
Four cores (our shark machines)
Intel x86 Evolution: Milestones	Name	Date	Transistors	MHz8086	1978	29K	5-10First 16-bit Intel processor. Basis for IBM PC & DOS1MB address space386	1985	275K	16-33	First 32 bit

Слайд 6Intel x86 Processors, cont.
Machine Evolution
386 1985 0.3M
Pentium 1993 3.1M
Pentium/MMX 1997 4.5M
PentiumPro 1995 6.5M
Pentium III 1999 8.2M
Pentium 4 2000 42M
Core 2 Duo 2006 291M
Core i7 2008 731M
Core

i7 Skylake 2015 1.9B
Added Features
Instructions to support multimedia operations
Instructions to enable more

efficient conditional operations
Transition from 32 bits to 64 bits
More cores
Intel x86 Processors, cont.Machine Evolution386	1985	0.3M	Pentium	1993	3.1MPentium/MMX	1997	4.5MPentiumPro	1995	6.5MPentium III	1999	8.2MPentium 4	2000	42MCore 2 Duo	2006	291MCore i7	2008	731MCore i7 Skylake	2015	1.9BAdded FeaturesInstructions to support multimedia operationsInstructions

Слайд 7Intel x86 Processors, cont.
Past Generations
1st Pentium Pro 1995 600 nm
1st Pentium III 1999 250

nm
1st Pentium 4 2000 180 nm
1st Core 2 Duo 2006 65 nm
Recent Generations
Nehalem 2008

45 nm
Sandy Bridge 2011 32 nm
Ivy Bridge 2012 22 nm
Haswell 2013 22 nm
Broadwell 2014 14 nm
Skylake 2015 14 nm
Kaby Lake 2016 14 nm
Coffee Lake 2017? 14 nm
Cannonlake 2018? 10 nm

Process technology

Process technology dimension = width of narrowest wires
(10 nm ≈ 100 atoms wide)

Intel x86 Processors, cont.Past Generations1st Pentium Pro	1995	600 nm1st Pentium III	1999	250 nm1st Pentium 4	2000	180 nm1st Core 2 Duo	2006

Слайд 82018 State of the Art: Skylake (Core i7 v6)
Mobile Model:

Core i7
2.6-2.9 GHz
45 W

Desktop Model: Core i7
Integrated graphics
2.8-4.0 GHz
35-91 W

Server

Model: Xeon
Integrated graphics
Multi-socket enabled
2-3.7 GHz
25-80 W
2018 State of the Art: Skylake (Core i7 v6)Mobile Model: Core i72.6-2.9 GHz45 WDesktop Model: Core i7Integrated

Слайд 9x86 Clones: Advanced Micro Devices (AMD)
Historically
AMD has followed just behind

Intel
A little bit slower, a lot cheaper
Then
Recruited top circuit designers

from Digital Equipment Corp. and other downward trending companies
Built Opteron: tough competitor to Pentium 4
Developed x86-64, their own extension to 64 bits
Recent Years
Intel got its act together
Leads the world in semiconductor technology
AMD has fallen behind
Relies on external semiconductor manufacturer
x86 Clones: Advanced Micro Devices (AMD)HistoricallyAMD has followed just behind IntelA little bit slower, a lot cheaperThenRecruited

Слайд 10Intel’s 64-Bit History
2001: Intel Attempts Radical Shift from IA32 to

IA64
Totally different architecture (Itanium)
Executes IA32 code only as legacy
Performance disappointing
2003:

AMD Steps in with Evolutionary Solution
x86-64 (now called “AMD64”)
Intel Felt Obligated to Focus on IA64
Hard to admit mistake or that AMD is better
2004: Intel Announces EM64T extension to IA32
Extended Memory 64-bit Technology
Almost identical to x86-64!
All but low-end x86 processors support x86-64
But, lots of code still runs in 32-bit mode
Intel’s 64-Bit History2001: Intel Attempts Radical Shift from IA32 to IA64Totally different architecture (Itanium)Executes IA32 code only

Слайд 11Our Coverage
IA32
The traditional x86
For 15/18-213: RIP, Summer 2015

x86-64
The standard
shark> gcc

hello.c
shark> gcc –m64 hello.c

Presentation
Book covers x86-64
Web aside on IA32
We will

only cover x86-64
Our CoverageIA32The traditional x86For 15/18-213: RIP, Summer 2015x86-64The standardshark> gcc hello.cshark> gcc –m64 hello.cPresentationBook covers x86-64Web aside

Слайд 12Today: Machine Programming I: Basics
History of Intel processors and architectures
Assembly

Basics: Registers, operands, move
Arithmetic & logical operations
C, assembly, machine code

Today: Machine Programming I: BasicsHistory of Intel processors and architecturesAssembly Basics: Registers, operands, moveArithmetic & logical operationsC,

Слайд 13Levels of Abstraction
C programmer
Assembly programmer
Computer Designer
C code
Caches, clock freq, layout,


Nice clean layers, but beware…
Of course, you know that:

It’s why you are taking this course.
Levels of AbstractionC programmerAssembly programmerComputer DesignerC codeCaches, clock freq, layout, …Nice clean layers,  but beware… Of

Слайд 14Definitions
Architecture: (also ISA: instruction set architecture) The parts of a

processor design that one needs to understand for writing assembly/machine

code.
Examples: instruction set specification, registers
Microarchitecture: Implementation of the architecture
Examples: cache sizes and core frequency
Code Forms:
Machine Code: The byte-level programs that a processor executes
Assembly Code: A text representation of machine code
Example ISAs:
Intel: x86, IA32, Itanium, x86-64
ARM: Used in almost all mobile phones
RISC V: New open-source ISA
DefinitionsArchitecture: (also ISA: instruction set architecture) The parts of a processor design that one needs to understand

Слайд 15CPU
Assembly/Machine Code View
Programmer-Visible State
PC: Program counter
Address of next instruction
Called “RIP”

(x86-64)
Register file
Heavily used program data
Condition codes
Store status information about most

recent arithmetic or logical operation
Used for conditional branching

PC

Registers

Memory

Code
Data
Stack

Addresses

Data

Instructions

Condition
Codes

Memory
Byte addressable array
Code and user data
Stack to support procedures

CPUAssembly/Machine Code ViewProgrammer-Visible StatePC: Program counterAddress of next instructionCalled “RIP” (x86-64)Register fileHeavily used program dataCondition codesStore status

Слайд 16Assembly Characteristics: Data Types
“Integer” data of 1, 2, 4, or

8 bytes
Data values
Addresses (untyped pointers)

Floating point data of 4, 8,

or 10 bytes

(SIMD vector data types of 8, 16, 32 or 64 bytes)

Code: Byte sequences encoding series of instructions

No aggregate types such as arrays or structures
Just contiguously allocated bytes in memory
Assembly Characteristics: Data Types“Integer” data of 1, 2, 4, or 8 bytesData valuesAddresses (untyped pointers)Floating point data

Слайд 17%rsp
x86-64 Integer Registers
Can reference low-order 4 bytes (also low-order 1

& 2 bytes)
Not part of memory (or cache)
%eax
%ebx
%ecx
%edx
%esi
%edi
%esp
%ebp
%r8d
%r9d
%r10d
%r11d
%r12d
%r13d
%r14d
%r15d
%r8
%r9
%r10
%r11
%r12
%r13
%r14
%r15
%rax
%rbx
%rcx
%rdx
%rsi
%rdi
%rbp

%rspx86-64 Integer RegistersCan reference low-order 4 bytes (also low-order 1 & 2 bytes)Not part of memory (or

Слайд 18Some History: IA32 Registers
%ax
%cx
%dx
%bx
%si
%di
%sp
%bp
%ah
%ch
%dh
%bh
%al
%cl
%dl
%bl
16-bit virtual registers
(backwards compatibility)
general purpose
accumulate
counter
data
base
source
index
destination
index
stack
pointer
base
pointer
Origin
(mostly

obsolete)

Some History: IA32 Registers%ax%cx%dx%bx%si%di%sp%bp%ah%ch%dh%bh%al%cl%dl%bl16-bit virtual registers(backwards compatibility)general purposeaccumulatecounterdatabasesource indexdestinationindexstack pointerbasepointerOrigin(mostly obsolete)

Слайд 19Assembly Characteristics: Operations
Transfer data between memory and register
Load data from

memory into register
Store register data into memory

Perform arithmetic function on

register or memory data

Transfer control
Unconditional jumps to/from procedures
Conditional branches
Indirect branches
Assembly Characteristics: OperationsTransfer data between memory and registerLoad data from memory into registerStore register data into memoryPerform

Слайд 20Moving Data
Moving Data
movq Source, Dest
Operand Types
Immediate: Constant integer data
Example: $0x400,

$-533
Like C constant, but prefixed with ‘$’
Encoded with 1, 2,

or 4 bytes
Register: One of 16 integer registers
Example: %rax, %r13
But %rsp reserved for special use
Others have special uses for particular instructions
Memory: 8 consecutive bytes of memory at address given by register
Simplest example: (%rax)
Various other “addressing modes”

Warning: Intel docs use mov Dest, Source

Moving DataMoving Datamovq Source, DestOperand TypesImmediate: Constant integer dataExample: $0x400, $-533Like C constant, but prefixed with ‘$’Encoded

Слайд 21movq Operand Combinations
Cannot do memory-memory transfer with a single instruction
movq
Imm
Reg
Mem
Reg
Mem
Reg
Mem
Reg
Source
Dest
C

Analog
movq $0x4,%rax
temp = 0x4;
movq $-147,(%rax)
*p = -147;
movq %rax,%rdx
temp2 = temp1;
movq

%rax,(%rdx)

*p = temp;

movq (%rax),%rdx

temp = *p;

Src,Dest

movq Operand CombinationsCannot do memory-memory transfer with a single instructionmovqImmRegMemRegMemRegMemRegSourceDestC Analogmovq $0x4,%raxtemp = 0x4;movq $-147,(%rax)*p = -147;movq

Слайд 22Simple Memory Addressing Modes
Normal (R) Mem[Reg[R]]
Register R specifies memory address
Aha! Pointer dereferencing

in C movq (%rcx),%rax

Displacement D(R) Mem[Reg[R]+D]
Register R specifies start of memory region
Constant displacement

D specifies offset movq 8(%rbp),%rdx
Simple Memory Addressing ModesNormal	(R)	Mem[Reg[R]]Register R specifies memory addressAha! Pointer dereferencing in C  movq (%rcx),%raxDisplacement	D(R)	Mem[Reg[R]+D]Register R specifies

Слайд 23Example of Simple Addressing Modes
whatAmI:
movq (%rdi), %rax

movq (%rsi), %rdx
movq %rdx, (%rdi)

movq %rax, (%rsi)
ret

void
whatAmI( a, b)
{
????
}

Example of Simple Addressing ModeswhatAmI:  movq  (%rdi), %rax  movq  (%rsi), %rdx  movq

Слайд 24Example of Simple Addressing Modes
void swap
(long *xp, long

*yp)
{
long t0 = *xp;
long t1 = *yp;

*xp = t1;
*yp = t0;
}

swap:
movq (%rdi), %rax
movq (%rsi), %rdx
movq %rdx, (%rdi)
movq %rax, (%rsi)
ret

Example of Simple Addressing Modesvoid swap  (long *xp, long *yp) { long t0 = *xp; long

Слайд 25Understanding Swap()
void swap
(long *xp, long *yp)
{
long

t0 = *xp;
long t1 = *yp;
*xp = t1;

*yp = t0;
}

Memory

Register Value
%rdi xp
%rsi yp
%rax t0
%rdx t1

swap:
movq (%rdi), %rax # t0 = *xp
movq (%rsi), %rdx # t1 = *yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret

Registers

Understanding Swap()void swap  (long *xp, long *yp) { long t0 = *xp; long t1 = *yp;

Слайд 26Understanding Swap()
123
456
Registers
Memory
swap:
movq (%rdi), %rax # t0 =

*xp
movq (%rsi), %rdx # t1 =

*yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
Understanding Swap()123456RegistersMemoryswap:  movq  (%rdi), %rax # t0 = *xp   movq  (%rsi), %rdx

Слайд 27Understanding Swap()
123
456
Registers
Memory
swap:
movq (%rdi), %rax # t0 =

*xp
movq (%rsi), %rdx # t1 =

*yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
Understanding Swap()123456RegistersMemoryswap:  movq  (%rdi), %rax # t0 = *xp   movq  (%rsi), %rdx

Слайд 28Understanding Swap()
123
456
Registers
Memory
swap:
movq (%rdi), %rax # t0 =

*xp
movq (%rsi), %rdx # t1 =

*yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
Understanding Swap()123456RegistersMemoryswap:  movq  (%rdi), %rax # t0 = *xp   movq  (%rsi), %rdx

Слайд 29Understanding Swap()
456
456
Registers
Memory
swap:
movq (%rdi), %rax # t0 =

*xp
movq (%rsi), %rdx # t1 =

*yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
Understanding Swap()456456RegistersMemoryswap:  movq  (%rdi), %rax # t0 = *xp   movq  (%rsi), %rdx

Слайд 30Understanding Swap()
456
123
Registers
Memory
swap:
movq (%rdi), %rax # t0 =

*xp
movq (%rsi), %rdx # t1 =

*yp
movq %rdx, (%rdi) # *xp = t1
movq %rax, (%rsi) # *yp = t0
ret
Understanding Swap()456123RegistersMemoryswap:  movq  (%rdi), %rax # t0 = *xp   movq  (%rsi), %rdx

Слайд 31Simple Memory Addressing Modes
Normal (R) Mem[Reg[R]]
Register R specifies memory address
Aha! Pointer dereferencing

in C movq (%rcx),%rax

Displacement D(R) Mem[Reg[R]+D]
Register R specifies start of memory region
Constant displacement

D specifies offset movq 8(%rbp),%rdx
Simple Memory Addressing ModesNormal	(R)	Mem[Reg[R]]Register R specifies memory addressAha! Pointer dereferencing in C  movq (%rcx),%raxDisplacement	D(R)	Mem[Reg[R]+D]Register R specifies

Слайд 32Complete Memory Addressing Modes
Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
D: Constant “displacement” 1,

2, or 4 bytes
Rb: Base register: Any of 16 integer

registers
Ri: Index register: Any, except for %rsp
S: Scale: 1, 2, 4, or 8 (why these numbers?)

Special Cases
(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]
Complete Memory Addressing ModesMost General Form		D(Rb,Ri,S)	Mem[Reg[Rb]+S*Reg[Ri]+ D]D: 	Constant “displacement” 1, 2, or 4 bytesRb: 	Base register: Any

Слайд 33Address Computation Examples

Address Computation Examples

Слайд 34Address Computation Examples

Address Computation Examples

Слайд 35Today: Machine Programming I: Basics
History of Intel processors and architectures
Assembly

Basics: Registers, operands, move
Arithmetic & logical operations
C, assembly, machine code


Today: Machine Programming I: BasicsHistory of Intel processors and architecturesAssembly Basics: Registers, operands, moveArithmetic & logical operationsC,

Слайд 36Address Computation Instruction
leaq Src, Dst
Src is address mode expression
Set Dst

to address denoted by expression
Uses
Computing addresses without a memory reference
E.g.,

translation of p = &x[i];
Computing arithmetic expressions of the form x + k*y
k = 1, 2, 4, or 8
Example

long m12(long x)
{
return x*12;
}

leaq (%rdi,%rdi,2), %rax # t = x+2*x
salq $2, %rax # return t<<2

Converted to ASM by compiler:

Address Computation Instructionleaq Src, DstSrc is address mode expressionSet Dst to address denoted by expressionUsesComputing addresses without

Слайд 37Some Arithmetic Operations
Two Operand Instructions:
Format Computation
addq Src,Dest Dest = Dest + Src
subq Src,Dest Dest =

Dest  Src
imulq Src,Dest Dest = Dest * Src
salq Src,Dest Dest = Dest

Src Also called shlq
sarq Src,Dest Dest = Dest >> Src Arithmetic
shrq Src,Dest Dest = Dest >> Src Logical
xorq Src,Dest Dest = Dest ^ Src
andq Src,Dest Dest = Dest & Src
orq Src,Dest Dest = Dest | Src
Watch out for argument order! Src,Dest (Warning: Intel docs use “op Dest,Src”)
No distinction between signed and unsigned int (why?)
Some Arithmetic OperationsTwo Operand Instructions:Format	Computationaddq	Src,Dest	Dest = Dest + Srcsubq	Src,Dest	Dest = Dest  Srcimulq	Src,Dest	Dest = Dest * Srcsalq	Src,Dest	Dest

Слайд 38Quiz Time! halblustig: German, literal translation: “semi-funny” but often means “not funny

at all” in Austrian German
Check out: quiz: day 5: Machine

Basics

https://canvas.cmu.edu/courses/3822
Quiz Time! 	halblustig: German, literal translation: “semi-funny” 	but often means “not funny at all” in Austrian GermanCheck

Слайд 39Some Arithmetic Operations
One Operand Instructions
incq Dest Dest = Dest + 1
decq Dest Dest =

Dest  1
negq Dest Dest =  Dest
notq Dest Dest = ~Dest
See book for

more instructions
Some Arithmetic OperationsOne Operand Instructionsincq	Dest	Dest = Dest + 1decq	Dest	Dest = Dest  1negq	Dest	Dest =  Destnotq	Dest	Dest =

Слайд 40Arithmetic Expression Example
Interesting Instructions
leaq: address computation
salq: shift
imulq: multiplication
But, only used

once
long arith
(long x, long y, long z)
{
long t1 =

x+y;
long t2 = z+t1;
long t3 = x+4;
long t4 = y * 48;
long t5 = t3 + t4;
long rval = t2 * t5;
return rval;
}

arith:
leaq (%rdi,%rsi), %rax
addq %rdx, %rax
leaq (%rsi,%rsi,2), %rdx
salq $4, %rdx
leaq 4(%rdi,%rdx), %rcx
imulq %rcx, %rax
ret

Arithmetic Expression ExampleInteresting Instructionsleaq: address computationsalq: shiftimulq: multiplicationBut, only used oncelong arith(long x, long y, long z){

Слайд 41Understanding Arithmetic Expression Example
long arith
(long x, long y, long z)
{

long t1 = x+y;
long t2 = z+t1;
long t3

= x+4;
long t4 = y * 48;
long t5 = t3 + t4;
long rval = t2 * t5;
return rval;
}

arith:
leaq (%rdi,%rsi), %rax # t1
addq %rdx, %rax # t2
leaq (%rsi,%rsi,2), %rdx
salq $4, %rdx # t4
leaq 4(%rdi,%rdx), %rcx # t5
imulq %rcx, %rax # rval
ret

Compiler optimization:
Reuse of registers
Substitution (copy propagation)
Strength reduction

Understanding Arithmetic Expression Examplelong arith(long x, long y, long z){ long t1 = x+y; long t2 =

Слайд 42Today: Machine Programming I: Basics
History of Intel processors and architectures
Assembly

Basics: Registers, operands, move
Arithmetic & logical operations
C, assembly, machine code


Today: Machine Programming I: BasicsHistory of Intel processors and architecturesAssembly Basics: Registers, operands, moveArithmetic & logical operationsC,

Слайд 43text
text
binary
binary
Compiler (gcc –Og -S)
Assembler (gcc or as)
Linker (gcc or ld)
C

program (p1.c p2.c)
Asm program (p1.s p2.s)
Object program (p1.o p2.o)
Executable program

(p)

Static libraries (.a)

Turning C into Object Code

Code in files p1.c p2.c
Compile with command: gcc –Og p1.c p2.c -o p
Use basic optimizations (-Og) [New to recent versions of GCC]
Put resulting binary in file p

texttextbinarybinaryCompiler (gcc –Og -S)Assembler (gcc or as)Linker (gcc or ld)C program (p1.c p2.c)Asm program (p1.s p2.s)Object program

Слайд 44Compiling Into Assembly
C Code (sum.c)

long plus(long x, long y);

void

sumstore(long x, long y,

long *dest)
{
long t = plus(x, y);
*dest = t;
}

Generated x86-64 Assembly

sumstore:
pushq %rbx
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
ret

Obtain (on shark machine) with command
gcc –Og –S sum.c
Produces file sum.s
Warning: Will get very different results on non-Shark machines (Andrew Linux, Mac OS-X, …) due to different versions of gcc and different compiler settings.

Compiling Into AssemblyC Code (sum.c)long plus(long x, long y); void sumstore(long x, long y,

Слайд 45What it really looks like
.globl sumstore
.type sumstore, @function
sumstore:
.LFB35:
.cfi_startproc
pushq %rbx
.cfi_def_cfa_offset 16
.cfi_offset 3, -16
movq %rdx, %rbx
call plus
movq %rax,

(%rbx)
popq %rbx
.cfi_def_cfa_offset 8
ret
.cfi_endproc
.LFE35:
.size sumstore, .-sumstore

What it really looks like	.globl	sumstore	.type	sumstore, @functionsumstore:.LFB35:	.cfi_startproc	pushq	%rbx	.cfi_def_cfa_offset 16	.cfi_offset 3, -16	movq	%rdx, %rbx	call	plus	movq	%rax, (%rbx)	popq	%rbx	.cfi_def_cfa_offset 8	ret	.cfi_endproc.LFE35:	.size	sumstore, .-sumstore

Слайд 46What it really looks like
.globl sumstore
.type sumstore, @function
sumstore:
.LFB35:
.cfi_startproc
pushq %rbx
.cfi_def_cfa_offset 16
.cfi_offset 3, -16
movq %rdx, %rbx
call plus
movq %rax,

(%rbx)
popq %rbx
.cfi_def_cfa_offset 8
ret
.cfi_endproc
.LFE35:
.size sumstore, .-sumstore
Things that look weird and are preceded by

a ‘.’ are generally directives.
CFI = call frame information

sumstore:
pushq %rbx
movq %rdx, %rbx
call plus
movq %rax, (%rbx)
popq %rbx
ret

What it really looks like	.globl	sumstore	.type	sumstore, @functionsumstore:.LFB35:	.cfi_startproc	pushq	%rbx	.cfi_def_cfa_offset 16	.cfi_offset 3, -16	movq	%rdx, %rbx	call	plus	movq	%rax, (%rbx)	popq	%rbx	.cfi_def_cfa_offset 8	ret	.cfi_endproc.LFE35:	.size	sumstore, .-sumstoreThings that look weird and

Слайд 47Assembly Characteristics: Data Types
“Integer” data of 1, 2, 4, or

8 bytes
Data values
Addresses (untyped pointers)

Floating point data of 4, 8,

or 10 bytes

(SIMD vector data types of 8, 16, 32 or 64 bytes)

Code: Byte sequences encoding series of instructions

No aggregate types such as arrays or structures
Just contiguously allocated bytes in memory
Assembly Characteristics: Data Types“Integer” data of 1, 2, 4, or 8 bytesData valuesAddresses (untyped pointers)Floating point data

Слайд 48Assembly Characteristics: Operations
Transfer data between memory and register
Load data from

memory into register
Store register data into memory

Perform arithmetic function on

register or memory data

Transfer control
Unconditional jumps to/from procedures
Conditional branches
Indirect branch
Assembly Characteristics: OperationsTransfer data between memory and registerLoad data from memory into registerStore register data into memoryPerform

Слайд 49Code for sumstore

0x0400595:
0x53
0x48
0x89

0xd3
0xe8
0xf2
0xff
0xff

0xff
0x48
0x89
0x03
0x5b
0xc3

Object Code

Assembler
Translates .s into .o
Binary encoding of each instruction
Nearly-complete image of executable code
Missing linkages between code in different files
Linker
Resolves references between files
Combines with static run-time libraries
E.g., code for malloc, printf
Some libraries are dynamically linked
Linking occurs when program begins execution

Total of 14 bytes
Each instruction 1, 3, or 5 bytes
Starts at address 0x0400595

Code for sumstore0x0400595:  0x53  0x48  0x89  0xd3  0xe8  0xf2  0xff

Слайд 50Machine Instruction Example
C Code
Store value t where designated by dest
Assembly
Move

8-byte value to memory
Quad words in x86-64 parlance
Operands:
t: Register %rax
dest: Register %rbx
*dest: Memory M[%rbx]
Object Code
3-byte

instruction
Stored at address 0x40059e

*dest = t;

movq %rax, (%rbx)

0x40059e: 48 89 03

Machine Instruction ExampleC CodeStore value t where designated by destAssemblyMove 8-byte value to memoryQuad words in x86-64

Слайд 51Disassembled

Disassembling Object Code
Disassembler
objdump –d sum
Useful tool for examining object code
Analyzes

bit pattern of series of instructions
Produces approximate rendition of assembly

code
Can be run on either a.out (complete executable) or .o file

0000000000400595 :
400595: 53 push %rbx
400596: 48 89 d3 mov %rdx,%rbx
400599: e8 f2 ff ff ff callq 400590
40059e: 48 89 03 mov %rax,(%rbx)
4005a1: 5b pop %rbx
4005a2: c3 retq

DisassembledDisassembling Object CodeDisassemblerobjdump –d sumUseful tool for examining object codeAnalyzes bit pattern of series of instructionsProduces approximate

Слайд 52Alternate Disassembly
Within gdb Debugger
Disassemble procedure
gdb sum
disassemble sumstore

Alternate DisassemblyWithin gdb DebuggerDisassemble proceduregdb sumdisassemble sumstore

Слайд 53Alternate Disassembly
Within gdb Debugger
Disassemble procedure
gdb sum
disassemble sumstore
Examine the 14 bytes

starting at sumstore
x/14xb sumstore

Alternate DisassemblyWithin gdb DebuggerDisassemble proceduregdb sumdisassemble sumstoreExamine the 14 bytes starting at sumstorex/14xb sumstore

Слайд 54What Can be Disassembled?
Anything that can be interpreted as executable

code
Disassembler examines bytes and reconstructs assembly source
% objdump -d WINWORD.EXE

WINWORD.EXE:

file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000: 55 push %ebp
30001001: 8b ec mov %esp,%ebp
30001003: 6a ff push $0xffffffff
30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

Reverse engineering forbidden by
Microsoft End User License Agreement

What Can be Disassembled?Anything that can be interpreted as executable codeDisassembler examines bytes and reconstructs assembly source%

Слайд 55Machine Programming I: Summary
History of Intel processors and architectures
Evolutionary design

leads to many quirks and artifacts
C, assembly, machine code
New forms

of visible state: program counter, registers, ...
Compiler must transform statements, expressions, procedures into low-level instruction sequences
Assembly Basics: Registers, operands, move
The x86-64 move instructions cover wide range of data movement forms
Arithmetic
C compiler will figure out different instruction combinations to carry out computation

Machine Programming I: SummaryHistory of Intel processors and architecturesEvolutionary design leads to many quirks and artifactsC, assembly,

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика