Разделы презентаций


МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА

Содержание

ГОСТ 12.1.029-80 ССБТ. Средства и методы защиты от шума. КлассификацияСП 51.13330.2011 Защита от шума. Актуализированная редакция СНиП 23-03-2003

Слайды и текст этой презентации

Слайд 1МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА
Лекции по курсу Промакустика

МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ОТ ШУМА  Лекции по курсу Промакустика

Слайд 2ГОСТ 12.1.029-80 ССБТ. Средства и методы защиты от шума. Классификация
СП

51.13330.2011 Защита от шума. Актуализированная редакция СНиП 23-03-2003

ГОСТ 12.1.029-80 ССБТ. Средства и методы защиты от шума. КлассификацияСП 51.13330.2011 Защита от шума. Актуализированная редакция СНиП

Слайд 3Воздушный шум - шум, распространяющийся в воздушной среде от источника

возникновения до места наблюдения.
Структурный шум - шум, излучаемый поверхностями колеблющихся

конструкций стен, перекрытий, перегородок зданий в звуковом диапазоне частот.

Воздушный шум - шум, распространяющийся в воздушной среде от источника возникновения до места наблюдения. Структурный шум -

Слайд 5Средства коллективной защиты от шума на пути его распространения

Средства коллективной защиты от шума на пути его распространения

Слайд 6средний по времени уровень звукового давления Lpeq,Т, дБ (time-averaged sound pressure level): Уровень звукового

давления постоянного шума, который на интервале времени Т имеет такое же среднеквадратичное

значение, что и рассматриваемый непостоянный шум.
Примечания
1 Средний по времени уровень звукового давления (далее - эквивалентный уровень звукового давления) является основной величиной для оценки иммиссии на рабочих местах и оценки воздействия шума на людей.

средний по времени уровень звукового давления Lpeq,Т, дБ (time-averaged sound pressure level): Уровень звукового давления постоянного шума, который на интервале времени Т имеет

Слайд 7А) эмиссия
Б) иммиссия
В) Экспозиция
ГОСТ Р 52797.1- 2007 Акустика. Рекомендуемые методы

проектирования малошумных рабочих мест производственных помещений. Часть 1. Принципы защиты

от шума

характеристика иммиссии и экспозиции шума L Т0, дБ (noise immission and noise exposure descriptors): Величина, представляющая собой эквивалентный уровень звука, отнесенный к номинальной продолжительности рабочего дня.
L Т0 = L Тe + 10 lg(Te/T0)
где T0 - регламентируемый временной интервал (например, 8 ч) и Te - продолжительность воздействия шума (Te £ T0).

А) эмиссияБ) иммиссияВ) ЭкспозицияГОСТ Р 52797.1- 2007 Акустика. Рекомендуемые методы проектирования малошумных рабочих мест производственных помещений. Часть

Слайд 8Пути проникновения шума:
1 — через ограждение; 2 — через отверстия;

3 — по строительным конструкциям
1) через ограждение, которое под действием

переменного давления падающей на него волны, колеблясь как диафрагма, излучает шум в тихое помещение;
2) непосредственно по воздуху через различного рода щели и отверстия;
3) посредством вибраций, возбуждаемых в строительных конструкциях механическим путем (удары, хождение и т. п.).
Пути проникновения шума: 1 — через ограждение; 2 — через отверстия; 3 — по строительным конструкциям1) через

Слайд 9 Физические принципы и основные закономерности звукоизоляции и звукопоглощения
τ = Е

прош. / Е пад ;
η = Е отр.

/ Е пад ;
α = Е погл. / Е пад;

α + η + τ = 1

Е пад = Е отр. + Е погл + Е прош.

Физические принципы и основные закономерности звукоизоляции и звукопоглощения  τ = Е прош. / Е

Слайд 10 Основные средства звукоизоляции

 Основные средства звукоизоляции

Слайд 11Звукоизоляция
эффект изоляции звука основан на его отражении
для изоляции звука

в воздухе, т.е. в среде с малым акустическим сопротивлением, следует

применять преграды из материалов с большим акустическим сопротивлением (металлы, дерево, твердые пластмассы)
Звукоизоляцияэффект изоляции звука основан на его отражении для изоляции звука в воздухе, т.е. в среде с малым

Слайд 12Коэффициент прохождения звука τ, падающего нормально на границу двух сред

можно определить по коэффициенту отражения η, который определяется через акустические

импедансы Z граничащих сред
η = [(Z1 - Z2)/ (Z1 + Z2)]2

Коэффициент прохождения звука τ, падающего нормально на границу двух сред можно определить по коэффициенту отражения η, который

Слайд 13Звукоизоляция
В твердых звукоизолирующих ограждениях поглощение энергии в мате-риале существенно меньше,

чем отражение (α

1, и коэффициент прохождения можно определить как
τ = 1 – η = 1 - [(Z1 - Z2)/ (Z1 + Z2)]2 = 4Z1 Z2 / (Z1 + Z2)2
ЗвукоизоляцияВ твердых звукоизолирующих ограждениях поглощение энергии в мате-риале существенно меньше, чем отражение (α

Слайд 14Звукоизоляция
звуковая волна встречает препятствие в виде массивной перегородки:
Z1 = ρc,


импеданс Z2 включает как инерционное сопротивление на единицу ее

площади, так и волновое сопротивление среды за стенкой
Z2 = jωm + ρc
τ = 1 / [1+(ωm/2ρc)2]

Звукоизоляциязвуковая волна встречает препятствие в виде массивной перегородки:Z1 = ρc, импеданс Z2 включает как инерционное сопротивление на

Слайд 15ω = 2πf
R = 10lg(1/ τ) = 10lg [1+( πf

m / ρc)2]
При достаточно больших значениях произведения f m :
R

≈ 20lg ( πf m / ρc) ( f ≠ 0) – Закон массы
При изменении угла падения Z = jωm cos θ
R = 10lg(1/ τ) = 10lg [1+( πf m cos θ / ρc)2],
где ƒ — частота, для которой проводится расчет (63, 125, 250 Гц,...); ρ — плотность среды; с — скорость звука в ней;
произведение ρс характеризует акустическое сопротивление среды, в которую излучается звук, и является постоянной величиной для нее;
для воздуха (при температуре 20°С) ρс = 410 кг * с/м2


ω = 2πfR = 10lg(1/ τ) = 10lg [1+( πf m / ρc)2]При достаточно больших значениях произведения

Слайд 16звукоизоляция перегородки при изменении угла падения уменьшается. Это явление называется

компонент - эффектом и наблюдается на частотах, на которых перегородка

является твердой, т.е. ее изгибная жесткость не проявляется.
 
В реальных условиях звуковое поле, воздействующее на перегородку, является диффузным, т.е. в нем все углы падения звуковых волн на перегородку равновероятны.
Это уменьшает звукоизоляцию, по мнению ряда исследователей на величину = 5 дБ. Тогда, подставляя численные значения π и ρc для воздуха
R = 20 lg f m – 47,5 ( дБ)
m - масса 1м2 ограждения
звукоизоляция перегородки при изменении угла падения уменьшается. Это явление называется компонент - эффектом и наблюдается на частотах,

Слайд 17Звукоизолирующая способность ограждений тем выше, чем они тяжелее, она меняется

по так называемому закону массы. Так, увеличение массы в 2

раза приводит к повышению звукоизоляции на 6 дБ. (звукоизоляция увеличивается на 6 дБ в каждой последующей октавной полосе)
Звукоизолирующая способность одного и того же ограждения возрастает с увеличением частоты, т.е. на высоких частотах эффект от установки ограждения будет значительно выше, чем на низких частотах.

Звукоизолирующая способность ограждений тем выше, чем они тяжелее, она меняется по так называемому закону массы. Так, увеличение

Слайд 18Частотные диапазоны звукоизоляции однослойного ограждения
Звукоизоляция в первом частотном диапазоне не поддается расчету

и определяется жесткостью ограждения и резонансными явлениями. Для большинства однослойных

ограждений этот диапазон лежит ниже нормируемого диапазона частот.
Во втором диапазоне (начинающемся выше двух, трехкратной низшей резонансной частоты колебаний ограждения) звукоизоляция определяется по Закону массы
Закон массы нарушается на частотах близких к критической частоте преграды, т.е. когда имеет место резонанс совпадения
В диапазоне III сначала наблюдается ухудшение звукоизоляции вследствие возникновения явления волнового совпадения, при котором распределение давления в падающей звуковой волне вдоль ограждения точно соответствует распределению амплитуды смещения собственных изгибных колебаний ограждения, что приводит к своеобразному пространственному резонансу и интенсивному росту колебаний. Затем звукоизоляция, зависящая не только от массы, но и от жесткости ограждения, увеличивается с ростом частоты несколько быстрее, чем в диапазоне II.

Уменьшение звукоизоляции начинается с частоты f > 0.5f кр.
 
На частотах f > 2f кр существенное значение начинает играть жесткость ограждения и внутренние потери η.


Частотная зависимость звукоизоляции ограждения
I — первый пространственный резонанс; II — закон масс;
III — резонанс совпадения

Частотные диапазоны звукоизоляции однослойного огражденияЗвукоизоляция в первом частотном диапазоне не поддается расчету и определяется жесткостью ограждения и резонансными явлениями.

Слайд 19 Частотная характеристика изоляции воздушного шума однослойным плоским ограждением
Тяжелая
Частотную характеристику

изоляции воздушного шума однослойной плоской ограждающей конструкцией поверхностной плотностью(1 м2

)от 100 до 1000 кг/м2 из бетона, железобетона, кирпича, керамических блоков и т.п. материалов определяют графическим способом, изображая ее в виде ломаной линии.
Координаты точки В (fв и Rв) частотной характеристики следует определять по графикам (НТД), fв - в зависимости от толщины h в м ограждающей конструкции (НТД) и Rв - в зависимости от поверхностной плотности m в кг/м2 ограждающей конструкции (НТД).

Лекгая (тонкая)
Частотную характеристику изоляции воздушного шума в дБ однослойной плоской тонкой ограждающей конструкцией из металла, стекла и тому подобных материалов.
Координаты точек В и С следует определять по НТД.
Наклон отрезка ВА на графике следует принимать равным 5 дБ на каждую октаву для глухих однослойных ограждающих конструкций из органического и силикатного стекла и 4 дБ на каждую октаву для ограждающих конструкций из других материалов.

Частотная характеристика изоляции воздушного шума однослойным плоским ограждениемТяжелаяЧастотную характеристику изоляции воздушного шума

Слайд 20Звукоизоляция двойных ограждений.
1 — падающий на изолирующую конструкцию воздушный звук;


2 —звук, прошедший в изолируемое помещение;
3 — звуковая вибрация;


4 — воздушный звук, порождаемый звуковой вибрацией.
Звукоизоляция двойных ограждений.1 — падающий на изолирующую конструкцию воздушный звук; 2 —звук, прошедший в изолируемое помещение; 3

Слайд 21ЗВУКОИЗОЛЯЦИЯ
Для повышения звукоизоляции и снижения массы ограждения применяют многослойные ограждения.


Для этого пространство между слоями заполняют пористо-волокнистыми материалами и оставляют

воздушную прослойку шириной 40 – 60 мм. На звукоизолирующую способность оказывает влияние масса слоя ограждения М1 и М2 и жесткость связей К, толщина слоя пористого материала или воздушной прослойки.
Чем ниже упругость промежуточного материала, тем меньше передача колебаний второму ограждающему слою, и тем выше звукоизоляция (практически, двойное ограждение позволяет снизить уровень шума на 60 дБ)
ЗВУКОИЗОЛЯЦИЯДля повышения звукоизоляции и снижения массы ограждения применяют многослойные ограждения. Для этого пространство между слоями заполняют пористо-волокнистыми

Слайд 22Двойное ограждение представляет собой колебательную систему из двух протяженных плит

с массами единичной площадки m1 и m2 и упругой связкой

между ними. Частота собственных колебаний этой системы :
f0 = 0,16 (k/m1 + k/m 2)1/2
где k – приведенный коэффициент жесткости упругого слоя, т. е. давление, необходимое для сжатия-растяжения слоя на единицу длины, зависящий от динамического модуля упругости материала слоя Е (k = Е/ h).
 
Для практических расчетов двойной перегородки с воздушным промежутком
f0 = 0,16[C (m1 + m 2) / m1m1 ]1/2 ,
где C = ρс2/ h – упругость воздушного слоя, тогда
f0 = 60[(m1 + m 2) / m1m1 h ]1/2



Двойное ограждение представляет собой колебательную систему из двух протяженных плит с массами единичной площадки m1 и m2

Слайд 23Для одинаковых перегородок из одного материала и одной толщины
f0 =

85 / ( mh )1/2
В общем случае для двойных ограждений

граничные частоты различны для каждого слоя, причем нижняя частота относится к слою, имеющему большую жесткость. Самыми выгодными оказываются двойные ограждения одинаковой массы, но с различными жесткостями при изгибе.
В диапазоне частот 3f0 < f < fгр2 значение звукоизоляции
R = R0 + ΔR,
 
где R0 - звукоизоляция однослойного ограждения с массой единицы площади m = m1+m 2 ,  
R0 = 20 lg mf – 47,5
 ΔR – дополнительная звукоизоляция

ΔR = a lg (f / f0 ) / b, где a и b – коэффициенты, определяемые видом упругого слоя
Для одинаковых перегородок из одного материала и одной толщиныf0 = 85 / ( mh )1/2	В общем случае

Слайд 24Для пассивных и жестких преград, у которых критические частоты лежат

ниже 3-5 кГц, применяют упругие мостики из резины с замкнутыми

порами, мягкой монолитной резины. Жесткость этих связей D должна удовлетворять неравенству

где E, Sm, h – модуль Юнга, площадь поперечного сечения и длина мостика S1, ρ1, E1 - толщина конструкции, плотность и модуль Юнга ее материала; fгр1 – первая граничная частота

Для преград , у которых критическая частота лежит выше 7 – 8 кГц, применяют инерционные мостики из стали, бронзы, масса которых должна удовлетворять неравенству
Для пассивных и жестких преград, у которых критические частоты лежат ниже 3-5 кГц, применяют упругие мостики из

Слайд 25Задание
Система государственных стандартов по защите от шума (группы, перечень, требования)
Строительно-акустические

(архитектурно-планировочные) мероприятия по защите от шума
Индивидуальные средства защиты от шума
Организационно-технические

(кроме глушителей) мероприятия по защите от шума



ЗаданиеСистема государственных стандартов по защите от шума (группы, перечень, требования)Строительно-акустические (архитектурно-планировочные) мероприятия по защите от шумаИндивидуальные средства

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика