Разделы презентаций


Основы финансовых вычислений Потоки платежей. Ренты

Содержание

Поток платежей – это последовательность величин самих платежей (со знаками) и моментами времени, когда они осуществлены.Платеж со знаком: + поступление; – выплата.Поток может быть конечным или бесконечным.Ставка процента

Слайды и текст этой презентации

Слайд 1Основы финансовых вычислений Потоки платежей. Ренты.

Основы финансовых вычислений Потоки платежей. Ренты.

Слайд 2Поток платежей – это последовательность величин самих платежей (со знаками)

и моментами времени, когда они осуществлены.
Платеж со знаком: + поступление;

– выплата.
Поток может быть конечным или бесконечным.


Ставка процента i обычно неизменна в течение всего потока.
Поток платежей – это последовательность величин самих платежей (со знаками) и моментами времени, когда они осуществлены.Платеж со

Слайд 3Величина потока в момент времени T:






Обобщающие характеристики:

– современная величина потока;
Если есть последний платеж, то величина

потока в момент этого платежа называется конечной величиной потока.
Величина потока в момент времени T:Обобщающие характеристики:     – современная величина потока;Если есть последний

Слайд 4Пример.









-2000
1000
2000

Пример.-200010002000

Слайд 5Поток положительных платежей одинаковой величины с постоянными промежутками между ними называется

рентой (аннуитетом).

Поток положительных платежей  одинаковой величины с постоянными промежутками между ними называется рентой (аннуитетом).

Слайд 6Параметры ренты:
R – величина отдельного платежа;
период ренты – временной интервал

между двумя соседними платежами;
срок ренты (n) – время, измеренное от

начала финансовой ренты до конца ее последнего периода;
i – процентная ставка, используемая при наращении и дисконтировании платежей;
m – число начислений процентов в году;
p – число платежей в году;
моменты платежа внутри периода.
Параметры ренты:R – величина отдельного платежа;период ренты – временной интервал между двумя соседними платежами;срок ренты (n) –

Слайд 7Моменты платежа внутри периода:
Если платеж поступает в конце очередного промежутка,

то рента называется постнумерандо, если в начале – пренумерандо.


Моменты платежа внутри периода:Если платеж поступает в конце очередного промежутка, то рента называется постнумерандо, если в начале

Слайд 8Конечная годовая рента постнумерандо (p = 1; m = 1).
R

– годовой платеж; n – длительность ренты;
i – годовая ставка.




Конечная годовая рента постнумерандо (p = 1; m = 1). R – годовой платеж; n – длительность

Слайд 9Наращенная величина конечной годовой ренты постнумерандо.






множитель наращения ренты постнумерандо
Наращенная величина конечной годовой ренты постнумерандо.

Слайд 10Современная величина конечной годовой ренты постнумерандо.







– коэффициент приведения ренты

Современная величина конечной годовой ренты постнумерандо.

Слайд 11





Как изменяются коэффициенты с ростом процентной ставки?




Как изменяются коэффициенты с ростом процентной ставки?

Слайд 12Характеристики конечной годовой ренты пренумерандо.






– множитель наращения ренты пренумерандо



Характеристики конечной годовой ренты пренумерандо.

Слайд 14{R; n; j}; (p = 1; m > 1)





{R; n;

i}; (p > 1; m = 1)
R – годовая сумма,

разовый платеж – R/p




{R; n; j}; (p = 1; m > 1){R; n; i}; (p > 1; m = 1)R

Слайд 15Наращенная стоимость ренты постнумерандо
{R; n; j}; (p = m >

1)




R – годовой платеж!

Наращенная стоимость ренты постнумерандо{R; n; j}; (p = m > 1)R – годовой платеж!

Слайд 16Наращенная стоимость ренты постнумерандо
{R; n; j}; (p ≥ 1; m

≥ 1, возможно, p ≠ m)
Общее число разовых платежей

R/p – np.
Первый платеж R/p внесен спустя 1/p года после начала к концу срока будет равен


Второй платеж





Наращенная стоимость ренты постнумерандо{R; n; j}; (p ≥ 1; m ≥ 1, возможно, p ≠ m) Общее

Слайд 17Наращенная стоимость ренты постнумерандо
{R; n; j}; (p ≥ 1; m

≥ 1, возможно, p ≠ m)



R – годовой платеж!


1.

Как найти современную стоимость такой ренты?
2. Как изменится формула для ренты пренумерандо?
Наращенная стоимость ренты постнумерандо{R; n; j}; (p ≥ 1; m ≥ 1, возможно, p ≠ m) R

Слайд 18Пример. R = 1000; n = 5; i = 0,1;

m=p=1











Пример. R = 1000; n = 5; i = 0,1; m=p=1

Слайд 19Пример. R = 1000; n = 5; i = 0,1;

m = p = 4; Rq = 250










Пример. R = 1000; n = 5; i = 0,1;  m = p = 4; Rq

Слайд 20Определение параметров годовой ренты.
{R; n; i} (p = m =

1)
Если заданы R; n; i, то A=R·a(n, i); S=R·s(n, i)
Если

заданы R; A или S; i, то из формул


получим:




*Имеет смысл только при R ≥ Ai
Определение параметров годовой ренты.{R; n; i} (p = m = 1)Если заданы R; n; i, то A=R·a(n,

Слайд 21округление n:
у р-срочной ренты результат округляется до ближайшего целого.
Например: n

= 6,28; р = 4. Тогда np = 25,12; [np]

= 25. Окончательно имеем n = 6,25.



округление n:у р-срочной ренты результат округляется до ближайшего целого.Например: n = 6,28; р = 4. Тогда np

Слайд 22Если заданы A или S; n; i, то







Если заданы A или S; n; i, то

Слайд 234) Если заданы R; A или S; n, то надо

подобрать i.







Решение может быть найдено приближенно.


4) Если заданы R; A или S; n, то надо подобрать i.Решение может быть найдено приближенно.

Слайд 24Следовательно, при A/R ≥ n уравнение решений не имеет, т.е.

искомой ставки не существует.



Следовательно, при A/R ≥ n уравнение решений не имеет, т.е. искомой ставки не существует.

Слайд 25Метод линейной интерполяции.
1. С помощью прикидочных расчетов находим нижнюю (iн)

и верхнюю (iв) оценки ставки путём подстановки в одну из

формул




различных числовых значений ставки i и сравнения результата с правой частью выражения.
2. Корректировка нижнего значения осуществляется по формуле

sн, sв ‒значения коэффициента наращения для iн и iв соответственно.
Метод линейной интерполяции.1. С помощью прикидочных расчетов находим нижнюю (iн) и верхнюю (iв) оценки ставки путём подстановки

Слайд 26Полученное значение ставки проверяют, подставляя его в левую часть исходного

уравнения и сравнивая результат с правой частью. Если точность недостаточна,

то повторно применяют последнюю формулу, заменив одно из значений ставки на более точное.
Полученное значение ставки проверяют, подставляя его в левую часть исходного уравнения и сравнивая результат с правой частью.

Слайд 27Вечные ренты или перпетуитеты
Чему равна будущая стоимость ренты такого рода?








Вечные ренты или перпетуитетыЧему равна будущая стоимость ренты такого рода?

Слайд 28Пример. По условиям страхового договора компания обязуется выплачивать 5 тыс.

рублей в год на протяжении неограниченного периода, т.е. вечно. Чему

должна быть равна стоимость этой ренты, если уровень процентной ставки составит 25% годовых?
Решение. А∞=5000/0,25=20000 руб.
Предположим, рассмотренная рента будет выплачиваться дважды в год по 2,5 тыс. рублей, столько же раз будут начисляться проценты (25% в этих условиях становится номинальной ставкой, m=2). Его стоимость останется неизменной 20 тыс. рублей:

Пример. По условиям страхового договора компания обязуется выплачивать 5 тыс. рублей в год на протяжении неограниченного периода,

Слайд 29В наиболее общем виде (m > 1, p > 1,

m ≠ p) формула приведенной стоимости вечной ренты:




Пример. Требуется

выкупить при ставке 25% годовых вечную ренту, член которой равен 5 млн. руб., выплачиваемых в конце каждого полугодия.
Решение.


В наиболее общем виде (m > 1, p > 1, m ≠ p) формула приведенной стоимости вечной

Слайд 30Связь между годовой вечной и годовой конечной рентами (аннуитетами).




То есть

современная величина конечной ренты, имеющей срок n периодов, может быть

представлена как разница между современными величинами двух вечных рент, выплаты по одной из которых начинаются с первого периода, а по второй – после n периодов.
Связь между годовой вечной и годовой конечной рентами (аннуитетами).То есть современная величина конечной ренты, имеющей срок n

Слайд 31Немедленные ренты



Отложенные ренты





Немедленные рентыОтложенные ренты

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика