Разделы презентаций


Плоская произвольная система сил (практика)

Содержание

Содержание 1. Основные понятия и определения в вопросах и ответах 2. Момент пары сил 3. Примеры решения задач 4. Задачи для самостоятельного решения

Слайды и текст этой презентации

Слайд 1ПЛОСКАЯ ПРОИЗВОЛЬНАЯ СИСТЕМА СИЛ
Кафедра теоретической механики и сопротивления материалов
Методические указания

для практических занятий по теоретической механике
Владивосток
2009
Составил В. Г. Непейвода
ФЕДЕРАЛЬНОЕ АГЕНТСТВО

МОРСКОГО И РЕЧНОГО ТРАНСПОРТА
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
Морской государственный университет им. адм. Г. И. Невельского
ПЛОСКАЯ ПРОИЗВОЛЬНАЯ СИСТЕМА СИЛКафедра теоретической механики и сопротивления материаловМетодические указания для практических занятий по теоретической механикеВладивосток2009Составил В.

Слайд 2 Содержание
1. Основные понятия и определения в вопросах

и ответах
2. Момент пары сил
3. Примеры

решения задач

4. Задачи для самостоятельного решения

Содержание  1. Основные понятия и определения в вопросах и ответах  2. Момент пары сил

Слайд 3
1. Основные понятия в вопросах и ответах
1.

Какая система сил называется плоской произвольной?
Плоской произвольной называется

система сил, у которой линии действия сил лежат произвольно в одной плоскости, рис. 1
1. Основные понятия в вопросах и ответах   1. Какая система сил называется плоской произвольной?

Слайд 4 2. К каким векторным величинам приводится плоская произ-вольная

система сил?

2. К каким векторным величинам приводится плоская произ-вольная система сил?

Слайд 5 3. Как направлены относительно друг друга главный вектор

и главный момент плоской произвольной системы сил?
Главный

вектор плоской произвольной системы сил лежит в плоскости действия сил, а главный момент перпендикулярен плоскости действия сил, рис. 2.
3. Как направлены относительно друг друга главный вектор и главный момент плоской произвольной системы сил?

Слайд 6 4. Какие условия выполняются при равновесии тела под

действием плоской произвольной системы сил?
Для равновесия плоской произвольной

системы сил необходимо и достаточно, чтобы главный вектор и главный момент этой системы сил относительно произвольного центра равнялись нулю.
4. Какие условия выполняются при равновесии тела под действием плоской произвольной системы сил?  Для

Слайд 7 5. Какие уравнения равновесия можно составить для плоской

произвольной системы сил?
Из условий равновесия плоской произвольной системы

сил можно получить уравнения равновесия в трёх различных формах:
5. Какие уравнения равновесия можно составить для плоской произвольной системы сил?  Из условий равновесия

Слайд 8






6. Какие уравнения равновесия чаще всего используются на

практике?
При использовании уравнений равновесия плоской произвольной системы сил

надо иметь в виду, что оси х, у в форме а) располагаются произвольно, но, как правило, используются взаимно-перпендикулярные оси;

На практике чаще всего используются уравнения в форме а).

6. Какие уравнения равновесия чаще всего используются на практике?  При использовании уравнений равновесия плоской

Слайд 9точки А и В в форме б) произвольны и АВ

не перпендикулярна оси Оx;

точки А и В в форме б) произвольны и АВ не перпендикулярна оси Оx;

Слайд 10 точки А, В и С в форме в)

не лежат на одной прямой.

точки А, В и С в форме в) не лежат на одной прямой.

Слайд 11 7. Что характеризует момент силы относительно точки?

Момент силы относительно точки (полюса, центра) – это физическая

величина, характеризующая меру вращательной способности данной силы относительно точки (полюса, центра).

8. Что называется плечом силы относительно точки?

Плечом силы относительно точки называют расстояние от точки до линии действия силы. (Расстояние от точки до линии действия силы – это длина перпендикуляра, опущенного из точки на линию действия силы.)

9. Чему равен момент силы относительно точки?

Для сил, лежащих в одной плоскости, момент каждой силы относительно выбранной точки на этой плоскости равен произведению модуля силы на её плечо, взятому со знаком «плюс» или «минус».

7. Что характеризует момент силы относительно точки?   Момент силы относительно точки (полюса, центра)

Слайд 12 10. Какое правило знаков применяется для моментов сил

относительно точки?
Установлено следующее правило для моментов сил: моменту

присваивается знак «+», если сила стремится вращать тело относительно данной точки против хода часовой стрелки, в противном случае присваивается знак «−».
10. Какое правило знаков применяется для моментов сил относительно точки?  Установлено следующее правило для

Слайд 13 Момент силы относительно точки обозначается так:

где m – операция вычисления алгебраического момента; нижний индекс О

– точка, относительно которой определяется момент.

11. С учётом выше изложенного, найдите моменты сил, изображённых на рис. 3.

Момент силы относительно точки обозначается так:   где m – операция вычисления алгебраического момента;

Слайд 14
Моменты силы на рис. 3 относительно точки О

равны:

Моменты силы на рис. 3 относительно точки О равны:

Слайд 17


Во многих случаях момент силы удобнее определять, применяя

теорему Вариньона. Согласно этой теореме момент любой силы относительно какой-либо

точки равен алгебраической сумме моментов составляющих этой силы относительно той же точки.

13. Как формулируется теорема Вариньона?

Во многих случаях момент силы удобнее определять, применяя теорему Вариньона. Согласно этой теореме момент любой

Слайд 18 Порядок применения теоремы Вариньона для определения момента произвольной

силы относительно центра О следую-щий:
1) разложить вектор силы

по двум направлениям (обычно взаимно-перпендикулярным), вдоль принятых координатных осей;

2) определить момент данной силы относительно точки как алгебраическую сумму моментов составляющих:

Порядок применения теоремы Вариньона для определения момента произвольной силы относительно центра О следую-щий:  1)

Слайд 19 Момент силы равен:

Момент силы равен:

Слайд 20
Второй вариант применения теоремы Вариньона показан на рис.

Второй вариант применения теоремы Вариньона показан на рис. 6:

Слайд 21 Рассмотрим пример использования теоремы Вариньона для тела, показанного

на рис. 7. Пусть известны значения а, в, с, d,

α, F и требуется подсчитать момент этой силы относительно центра А.


Разложим вектор на составляющие

Рассмотрим пример использования теоремы Вариньона для тела, показанного на рис. 7. Пусть известны значения а,

Слайд 22
где

Применяя теорему Вариньона, получим

где Применяя теорему Вариньона, получим

Слайд 232. Момент пары сил
Парой сил называется совокупность

двух численно равных, направленных в противоположные стороны сил, линии дей-ствия

которых параллельны. Очевидно, что главный вектор пары сил равен нулю. Поэтому пара сил не даёт слагаемых в уравнения проекций. Она учитывается только в уравнении моментов. На чертеже изображение пары Вы можете встретить в одном из следующих видов, рис. 8:


Если рассматриваемое тело – абсолютно твёрдое, то точка приложения пары сил не имеет значения: её момент относительно любой точки в плоскости действия пары будет иметь одно и то же алгебраическое значение.

2. Момент пары сил   Парой сил называется совокупность двух численно равных, направленных в противоположные стороны

Слайд 243. Примеры решения задач
Пример 1. Невесомая горизонтальная балка

АВ (рис. 9) опирается в точке А на цилиндрический шарнир,

в точке В – на ломаный невесомый стержень ВСD. К балке приложены: пара сил с моментом m и в точке Е сосредоточенная сила F. Определить реакции связей, наложенных на балку, если АВ = 3 м; АЕ = ЕВ; ВС = СD; m = 5 кН м; F = 6 кН; α = 60o.


3. Примеры решения задач  Пример 1. Невесомая горизонтальная балка АВ (рис. 9) опирается в точке А

Слайд 25 1. Запишем краткое условие задачи. Дано: F = 6

кН; m = 5 кН м; АВ = 3 м;

АЕ = ЕВ; ВС = СD; α = 60°. Определить: RA, RB.
1. Запишем краткое условие задачи. Дано: F = 6 кН; m = 5 кН м;

Слайд 26 2. Составим расчётную схему к задаче в следующей

последовательности:
1) рассмотрим равновесие балки АВ. Отбросим действующие на

балку связи и изобразим её на рисунке;

2) покажем действующие на балку активные силы: силу F и пару сил с моментом m;

2. Составим расчётную схему к задаче в следующей последовательности:  1) рассмотрим равновесие балки АВ.

Слайд 27 3) выберем систему взаимно-перпендикулярных осей координат xAy;

3) выберем систему взаимно-перпендикулярных осей координат xAy;

Слайд 28 4) балка имеет две связи – шарнирно-неподвижную опору

А и ломаный стержень BD; реакцию опоры А заменяем двумя

составляющими XA, YA ; реакция ломаного стержня RB проходит по линии, соединяющей точки закрепления стержня BD; предположим, что она направлена от В к D. В результате на рис. 10 видим расчётную схему задачи:
4) балка имеет две связи – шарнирно-неподвижную опору А и ломаный стержень BD; реакцию опоры

Слайд 29 Составим уравнения равновесия:
Сумма проекций сил на

ось x:

Составим уравнения равновесия:  Сумма проекций сил на ось x:

Слайд 30 Сумма проекций сил на ось y:

Сумма проекций сил на ось y:

Слайд 31 Сумма моментов относительно точки А:

Сумма моментов относительно точки А:

Слайд 32

ХА – 6⋅0,5 + RB⋅0,707 = 0,

YА – 6⋅0,866 – RВ⋅0,707 = 0, 5 – 6⋅1,5⋅0,866 – RB⋅3⋅0,707 = 0,

Подставляя в уравнения равновесия данные из условия задачи, находим неизвестные реакции:

ХА = 3,93 кН; YА = 4,27 кН; RB = –1,32 кН.

ХА – 6⋅0,5 + RB⋅0,707

Слайд 33 Для проверки результатов решения составим ещё одно уравнение

моментов относительно произвольной точки С, по отношению к которой все

найденные реакции опор балки дают моменты, отличные от нуля. Выберем точку С с координатами: xС = yС = 1 м.


Для проверки результатов решения составим ещё одно уравнение моментов относительно произвольной точки С, по отношению

Слайд 34 Тогда:
что подтверждает правильность решения задачи.

Тогда:что подтверждает правильность решения задачи.

Слайд 35 Пример 2. Пренебрегая весом крана АСD, определить реакции

подпятника А и подшипника В, возникающие при равномерном подъёме груза

Р, рис. 11.

1. Запишем краткое условие задачи и выполним рисунок к задаче. Дано: Р, α, АВ = a, ВС = в, CD = с. Определить: XA, YA, RB.

Решение

Пример 2. Пренебрегая весом крана АСD, определить реакции подпятника А и подшипника В, возникающие при

Слайд 36 2. Составим расчётную схему в следующей последователь-ности:


1) рассмотрим равновесие крана; изобразим его на

рис. 12;
2. Составим расчётную схему в следующей последователь-ности:   1) рассмотрим равновесие крана; изобразим

Слайд 37 2) покажем действующие на кран силу P,

которая равна по величине весу груза, прикреплённого к тросу, перекинутому

через блок Е;
2) покажем действующие на кран силу P, которая равна по величине весу груза, прикреплённого

Слайд 38 3) покажем силы реакций связей; кран имеет

две связи: подпятник А и подшипник В;

3) покажем силы реакций связей; кран имеет две связи: подпятник А и подшипник В;

Слайд 39 3. Построим координатные оси xAy.

В результате на рис. 12 получим расчётную схему, построен-ную

с применением метода освобождения от связей.
3. Построим координатные оси xAy.   В результате на рис. 12 получим расчётную

Слайд 40 4. Составим уравнения равновесия:






Сумма

проекций сил на ось x:

4. Составим уравнения равновесия:   Сумма проекций сил на ось x:

Слайд 41 Сумма проекций сил на ось y:

Сумма проекций сил на ось y:

Слайд 42 Сумма моментов сил относительно точки А:

Сумма моментов сил относительно точки А:

Слайд 43 Из этих уравнений определим реакции:

Из этих уравнений определим реакции:

Слайд 44 Для проверки предлагаем составить уравнение:

Если в уравнении не

будет ошибок, то оно будет удовлетво-ряться тождественно.

Для проверки предлагаем составить уравнение: Если в уравнении не будет ошибок, то оно будет удовлетво-ряться тождественно.

Слайд 45 Пример 3. Определить реакции жёсткой заделки невесомой

балки, рис. 13, загруженной сосредоточенной силой , парой сил с

моментом m, а также распределённой по закону треугольника нагрузкой с максимальной интенсивностью q, приняв в расчёте: АВ = 3 м, ВС = 2 м, ВС ⊥ АВ, α = 30°, F = 2 кН, m = 3 кНм, q = 4 кН/м.
Пример 3. Определить реакции жёсткой заделки невесомой балки, рис. 13, загруженной сосредоточенной силой ,

Слайд 46 2. Составим расчётную схему в следующей последователь-ности:

1) чтобы определить силы реакций, рассмотрим равновесие балки; выполним рисунок

балки, отбросив заделку;
2. Составим расчётную схему в следующей последователь-ности:  1) чтобы определить силы реакций, рассмотрим равновесие

Слайд 47
линия действия силы делит катет АВ прямоугольного треу-гольника в точке

Е на отрезки:

линия действия силы делит катет АВ прямоугольного треу-гольника в точке Е на отрезки:

Слайд 48 3) балка имеет одну связь – плоскую жёсткую

заделку; реакции такой заделки представляются в виде трёх независимых составляющих:

двух взаимно-перпендикулярных сил и момента пары mA; покажем на рисунке эти составляющие; в результате получим расчётную схему, построенную с применением метода освобождения от связей, рис. 14.
3) балка имеет одну связь – плоскую жёсткую заделку; реакции такой заделки представляются в виде

Слайд 49 Сумма проекций сил на ось x:

3. Составим уравнения равновесия:

Сумма проекций сил на ось x:  3. Составим уравнения равновесия:

Слайд 50 Сумма проекций сил на ось y:

Сумма проекций сил на ось y:

Слайд 51 Сумма моментов сил относительно точки А:

Сумма моментов сил относительно точки А:

Слайд 52 Получили систему уравнений:
Решим эту

систему уравнений, используя пакет Mathcad.
Дано:

Получили систему уравнений:   Решим эту систему уравнений, используя пакет Mathcad.

Слайд 53 Программа расчёта

Программа расчёта

Слайд 54 Ответ:
Для проверки результатов решения составили

уравнение:
Уравнение тождественно удовлетворится. Следовательно, в решении нет

ошибок.
Ответ:  Для проверки результатов решения составили уравнение:   Уравнение тождественно удовлетворится. Следовательно,

Слайд 55 В результате решения уравнений получили:
ХА= – 1,73 кН;

YА = 5,00 кН; mА = 9,46 кНм.

В результате решения уравнений получили:ХА= – 1,73 кН;  YА = 5,00 кН;  mА

Слайд 564. Задачи для самостоятельного решения
1. Однородная балка АВ

весом Р = 100 Н прикреплена к стене шарниром А

и удерживается под углом 45o к вертикали при помощи троса, перекинутого через блок С и несущего груз G. Ветвь ВС троса образует с вертикалью угол 30o. В точке D к балке подвешен груз Q весом 200 Н, рис. 15. Определить вес груза G и реакцию шарнира А, пренебрегая трением на блоке, если ВD =BA/4.

Ответ:
G = 146,38 H;
XA = 73,19 H;
YA = 173,24 H.

4. Задачи для самостоятельного решения  1. Однородная балка АВ весом Р = 100 Н прикреплена к

Слайд 57 2. Однородный стержень АВ весом 100 Н опирается

одним концом на гладкий горизонтальный пол, другим – на гладкую

плоскость, наклонённую под углом 30° к горизонту. У конца В стержень поддерживается верёвкой, перекинутой через блок С и несущей груз Р, часть верёвки ВС параллельна наклонной плос-кости, рис. 16.
Пренебрегая трением на блоке, определить величину груза Р и силы давления NА и NВ на пол и на наклонную плоскость.

Ответ:
P = 25 H;
NA = 50 H;
NB = 43,3 H.

2. Однородный стержень АВ весом 100 Н опирается одним концом на гладкий горизонтальный пол, другим

Слайд 58 3. Определить реакции опор А и В невесомой

балки, изобра-жённой на рис. 17, приняв при расчёте АС =

CD = 1 м; СВ = ВD; Р = 2 кН; m = 3 кНм; α = 30°.

4. Однородный шар весом Q и радиусом r и гиря весом Р подвешены на верёвках в точке О, как показано на рис. 18. Расстояние ОМ = b.
Определить, какой угол ϕ образует прямая ОМ с вертикалью при равновесии.


Ответ:
XA = -1,73 кH; YA = -2,33 кH. RB = 1,33 кH.

Ответ: sin ϕ = aP/b(P+Q)

3. Определить реакции опор А и В невесомой балки, изобра-жённой на рис. 17, приняв при

Слайд 59 5. Определить реакции опор А и В невесомой

балки, изображённой на рис. 19, приняв при расчёте АС =

CD = 1 м; СВ = BD; Р = 2 кН; m = 3 кНм; α = 30°. Размерами блока пренебречь.


Ответ: XB =0; YB = 0,67 кH. RA = 1,33 кH.

5. Определить реакции опор А и В невесомой балки, изображённой на рис. 19, приняв при

Слайд 60 6. Ломаный рычаг АВС, имеющий неподвижную ось В,

весом P = 80 Н; плечо АВ = 0,4 м,

плечо ВС = 1 м, центр тяжести рычага находится на расстоянии 0,212 м от вертикаль-ной прямой ВD. В точках А и С привязаны верёвки, перекинутые через блоки Е и К и натягиваемые гирями весом Р1 = 310 Н и Р2 = 100 Н, рис. 20.
Пренебрегая трением на блоках, определить угол ВСК = α в положении равновесия, если угол ВАЕ = 135°.

Ответ: α1 =45o; α2 = 135o.

6. Ломаный рычаг АВС, имеющий неподвижную ось В, весом P = 80 Н; плечо АВ

Слайд 61 7. Определить реакции опор балки, изображённой на рис.

21, если известны: F = 500 Н, q = 200

Н/м, α = 30°; АА′ и СС′ – жёсткие невесомые стержни; АD = BD = CD = 0,5 м; m = 750 Нм.


Ответ: RA =647,94 H; RB = 369,05 H. RC = 873,34 H.

7. Определить реакции опор балки, изображённой на рис. 21, если известны: F = 500 Н,

Слайд 62 8. Для балки АВС, изображённой на рис. 22,

определить реакции жёсткой заделки, если известны: АВ = 4,5 м,

ВС = 1,5 м, α = 120°; Р = 25 кН; q0 = 24 кН/м; АВ ⊥ ВС.


Ответ: XA = 2,00 кH; YA = -4,33 кH. MA = -2,00 Hм.

8. Для балки АВС, изображённой на рис. 22, определить реакции жёсткой заделки, если известны: АВ

Слайд 63 9. Определить реакции опор А и В двухконсольной

балки, находящейся под действием сосредоточенной силы Р, пары сил с

моментом m и распределённой нагрузки, изменяющейся по закону треугольника, рис. 23. В расчёте принять: Р = 2 кН, m = 3 кНм, q0 = 3 кН/м: А1А = АВ = ВВ1 = 0,6 м; α = 60°.

Ответ: XA = 1,00 кH; YA = 2,60 кH. RB = 4,33 кH.

9. Определить реакции опор А и В двухконсольной балки, находящейся под действием сосредоточенной силы Р,

Слайд 64 10. Для балки, изображённой на рис. 24, определить

реакции жёсткой заделки. В расчёте принять: F = 300 H,

m = 50 Hм, α = 30°, q = 100 Н/м, АВ = ВС = CD = DE = 0,6 м.

Ответ: XA = 150 H; YA = 229,81 H. MA = 213,64 Hм.

10. Для балки, изображённой на рис. 24, определить реакции жёсткой заделки. В расчёте принять: F

Слайд 65
Ответ: vmax = G ctg α/2κ.

Ответ: vmax = G ctg α/2κ.

Слайд 66 2. Выполнить то же, что и в п.

1, при действии только силы F ;
3. Выполнить

то же, что и в п. 1, при действии только пары сил с моментом m.




2. Выполнить то же, что и в п. 1, при действии только силы F ;

Слайд 67КОНЕЦ

КОНЕЦ

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика