Разделы презентаций


Теория Информации

Contents Introduction: Data security. Fundamental concepts of cryptography. Transposition and Substitution ciphers: Simple transposition. Product cipher. Simple substitution cipher. Caesar cipher. Vigener cipher. Mono and Poly alphabetic substitution cipher:

Слайды и текст этой презентации

Слайд 1Теория Информации
Ярмолик Вячеслав Николаевич
Лекция 1

2015

Теория Информации Ярмолик Вячеслав НиколаевичЛекция 12015

Слайд 2 Contents
Introduction: Data security. Fundamental concepts of cryptography.
Transposition and

Substitution ciphers: Simple transposition. Product cipher. Simple substitution

cipher. Caesar cipher. Vigener cipher.
Mono and Poly alphabetic substitution cipher: Playfair cipher.
Rotor machines. The Enigma: a unique rotor machine.
Data Encryption Standard (DES): History of the DES. DES algorithms.Weak and semi weak keys. Advanced DES versions. IDEA. Blowfish.
Advanced Encryption Standard (AES): Reindgiil Algorithm.
Number theory: Prime numbers. Euler’s function. Euler’s theorem. Congruence.
Public Key Cipher: Principles of the public key cipher. One-way function. Deffie and Hellman algorithm.

Contents		Introduction: Data security. Fundamental concepts of 	cryptography.  		Transposition and Substitution ciphers: Simple   	transposition. Product

Слайд 3 Contents cont.

RSA Cipher: Riverst, Shamir and Adleman public key cipher.

Practical aspects.
Linear Feedback Shift Register: Pseudorandom key generation by LFSR.

M- sequences.
Stream cipher: Synchronous stream ciphers. Self- synchronizing cipher.
Cryptographic Keys Management: Keys generation, distribution and athetifacation of Public Keys
Communication Security: Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL).
Authentication Protocols: Password- authentication key agreement protocols. Password Authentification Protocol (PAP)

Contents cont.		RSA Cipher: Riverst, Shamir and Adleman public 	key cipher. Practical aspects.		Linear Feedback Shift Register: Pseudorandom 	key

Слайд 4Contents cont.
Digital signature: Main definition. Digital signature based on Symmetric

cryptosystem.
Hash Functions: Message authentication codes (MAC). MD5. SHA-1.
Digital Signature

algorithms: RSA based digital signature. Digital Signature Standard (DSS). ElGamal signature scheme.
Digital Signature algorithms modifications: Blind signature. Group signature. Proxy signature.
Elliptic curve cryptography: Elliptic curve cryptosystem (ECC). Elliptic curve Diffie-Hellman algorithm. Elliptic curve Menezes-Qu-Vanstone cryptosystem.
Elliptic Curve Digital Signature Algorithm: ECDSA algorithm.
Quantum Cryptography: Quantum Key Distribution. BB84, B92, Entanglement-Based quantum fey distribution.
Contents cont.			Digital signature: Main definition. Digital signature based on Symmetric cryptosystem. 			Hash Functions: Message authentication codes (MAC).

Слайд 5Contents Cont.

Physical Cryptography: Physical unclonable function (PUF). Arbiter PUF. Ring

oscillator PUF. SRAM based PUF.
Steganography: Textual steganography. Graphical steganography.

LSB, BPCS, ABCDE and PCT steganography.
Watermarking and Fingerprinting: Patchwork method. Copyright Protection Watermarking for copy protection
Software protection: Software watermarking, obfuscation, and tamper-proofing. Software dongle. Electronic keys.
E-Commerce security: E-commerce security standards. SET protocol.
Internet Banking security: Online Banking Security. Password and PIN security:

Contents Cont.	Physical Cryptography: Physical unclonable function (PUF). Arbiter PUF. Ring oscillator PUF. SRAM based PUF. 	Steganography: Textual

Слайд 6 1. Романец, Ю.В. Защита информации в компьютерных системах и сетях

/ Ю.В. Романец, П.А. Тимофеев, В.Ф. Шаньгин. – М.: Радио

и связь, 1999. – 328 с.
2. Харин, Ю.С. Математические и компьютерные основы криптологии / Ю.С. Харин, В.И. Берник, Г.В. Матвеев, С.В. Агиевич. – Минск : Новое Знание, 2003. – 382 с.
3. Шнайер, Б. Прикладная криптография. Протоколы, алгоритмы, исходные тексты на языке Си / Б. Шнаейр. – М. : ТРИУМФ, 2002. – 816 с.
4. Ярмолик, В.Н. Элементы теории информации. Практикум для студентов специальности “Программное обеспечение информационных технологий” / В.Н. Ярмолик, А.П. Занкович, С.С. Портянко. – Минск : БГУИР, 2007. – 40 с.
5. Ярмолик, В.Н. Криптография, стеганография и охрана авторского права / В.Н. Ярмолик, С.С. Портянко, С.В. Ярмолик. – Минск : Издательский центр БГУ, 2007. – с.
6. Грибунин, В.Г. Цифровая стеганография / В.Г. Грибунин, И. Н. Оков, И. В. Туринцев. – М. : СОЛОН-Пресс, 2002. – 272 с.

1. Романец, Ю.В. Защита информации в компьютерных системах и сетях / Ю.В. Романец, П.А. Тимофеев, В.Ф. Шаньгин.

Слайд 7 Cryptography is the science and study of secret writing.
A cipher

is a secret method of writing, whereby plaintext (or cleartext)

is transformed into ciphertext (cryptogram).
Encipherment (encryption) is the process of transforming plaintext into ciphertext.
Decipherment (decryption) is the reverse process of transforming ciphertext into plaintext. Both encipherment and decipherment are controlled by a cryptographic key or keys.

Introduction

Cryptography is the science and study of secret writing.	A cipher is a secret method of writing, whereby

Слайд 8There are two basic types of ciphers transpositions and substitutions.
Transposition

ciphers rearrange bits or characters.
The following simple example of

the “rail-fence” cipher illustrate this method.

Fig.1.2. Rail-fence transposition cipher

Introduction Transposition ciphers

There are two basic types of ciphers transpositions and substitutions.Transposition ciphers rearrange bits or characters. The following

Слайд 9Introduction
Substitutions ciphers
Substitution ciphers replace bits, characters, or blocks of

characters with substitutes.

A simplest type of substitution cipher shifts

each letter in the English alphabet forward by k positions cyclically (shifts past Z cycle back to A). k is the key to the cipher. This type of cipher is often called a Caesar cipher.

Fig.1.3. Caesar’s substitution cipher

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Introduction Substitutions ciphers		Substitution ciphers replace bits, characters, or blocks of 	characters with substitutes. 		A simplest type of

Слайд 10Plaintext
Fig.1.4. Classical information channel
Introduction
Data Security
There are two principle objectives: secrecy

(or privacy),
to prevent the unauthorized disclosure of data; and

authenticity
or integrity), to prevent the unauthorized modification of data.
PlaintextFig.1.4. Classical information channelIntroductionData Security	There are two principle objectives: secrecy (or privacy), to prevent the unauthorized disclosure

Слайд 11Introduction
Cryptographic Systems

A cryptographic system (or cryptosystem for short) has five

components:
1. A plaintext message space, M.
2. A cipher message space,

C.
3. A key space, k.
4. A family of enciphering transform., Ek: M --> C.
5. A family of deciphering transform., Dk: C --> M.

Cryptosystems General Requirements
1. The system must be easy to use.
2. The enciphering and deciphering transformations must be efficient for all keys.
3. The security of the system should depend only on the secrecy of the keys and not on the secrecy of the algorithms E and D.

IntroductionCryptographic SystemsA cryptographic system (or cryptosystem for short) has five components:	1. A plaintext message space, M.	2. A

Слайд 12Introduction
Requirement for secrecy and authenticity
Secrecy Requirements
1. It should be computationally

infeasible for a cryptanalyst to systematically determine the deciphering transformation

Dk from intercepted ciphertext C, even if the corresponding plaintext M is known.
2. It should be computationally infeasible for a cryptanalyst to systematically determine plaintext M from intercepted ciphertext C.
Authenticity Requirements
1. It should be computationally infeasible for a cryptanalyst to systematically determine the enciphering transformation Ek given C even if the corresponding plaintext M is known.
2. It should be computationally infeasible for a cryptanalyst to systematically find ciphertext C’ such that Dk (C’) is valid plaintext in the set M.
IntroductionRequirement for secrecy and authenticitySecrecy Requirements	1. It should be computationally infeasible for a cryptanalyst to systematically determine

Слайд 13Introduction
Simmons Cryptosystems Classifications
Simmons classifies cryptosystems as symmetric (one-key) and

asymmetric (two-key).
In symmetric or one-key cryptosystems the enciphering and

deciphering key are the same (or easily determined from each other). This means the transformations Ek and Dk are also easily derived from each other. Until recently, all cryptosystems were one-key systems only. There are also usually referred to as conventional (or classical) systems.
One-key systems provide an excellent way of enciphering user’s privite files. Each user A has private transformations Ek and Dk for enciphering and deciphering files.
IntroductionSimmons Cryptosystems Classifications 	Simmons classifies cryptosystems as symmetric (one-key) and asymmetric (two-key). 	In symmetric or one-key cryptosystems

Слайд 14 In a public-key system, each user A has a public

transformation EA, which may be registered with a public directory,

and a private transformation DA, which is known only to that user.
The private transformation DA is described by a private key, and the public transformation EA by a public key derived from the private key by one-way transformation. It must be computational infeasible to determine DA from EA (or even to fined a transformation equivalent to DA).
In a public-key system, secrecy and authenticity are provided by the separate transformations. Suppose user A wishes to send a message M to another user B. If A knows B’s public transformation EB, A can transmit M to B in secrecy by sending the ciphertext C=EB (M). On receipt, B deciphers C using B’s private transformation , getting

DB(C)=DB(EB(M))=M.

Introduction
Public Key Cryptosystems

In a public-key system, each user A has a public transformation EA, which may be registered with

Слайд 15Introduction
Public Key Cryptosystems
For authenticity, M must be transformed by

A’s own private transformation DA. Ignoring secrecy for the moment,

A sends C=DA(M) to B. On receipt, B uses A’s public transformation EA to compute
EA(C)=EA(DA(M))=M

Fig.1.8. Authenticity in public-key system

IntroductionPublic Key Cryptosystems 	For authenticity, M must be transformed by A’s own private transformation DA. Ignoring secrecy

Слайд 16 To achieve both secrecy and authenticity, the sender and receiver

must each apply two sets of transformations. Sender A generates

a ciphertext C=EB(DA(M)), and B recovers M according to

EA(DB(C))=EA(DB(EB(DA(M))))= EA(DA(M))=M.

M

C

M

secrecy

User A

User B

DA

Private

EB

Public

DB

Private

EA

Public

authenticity

Fig.1.9. Secrecy and Authenticity in public-key system

Introduction
Public Key Cryptosystems

To achieve both secrecy and authenticity, the sender and receiver must each apply two sets of transformations.

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика