Слайд 1Введение.
Новое поколение технологий приносит новые скорости и новые технологические решения.
Правда, на деле случалось не раз, что революционные нововведения оказывались
не всегда своевременными и не такими уж полезными, как красиво заявлялось при их выпуске. Традиционно, отдуваться за эксперименты приходится конечному покупателю. Примеров самых передовых, но неоцененных или невостребованных технологий можно привести множество – шина EISA, память RDRAM, слоты AMR/CNR и многое другое.
Не касаясь тупиковых ветвей эволюции ПК, сегодня стоит поговорить о своевременности внедрения новых технологий на примере шины PCI Express.
Слайд 2Введение.
Сегодня можно с уверенностью сказать, что от перехода на этот
шинный стандарт никуда не деться. Попробуем рассмотреть ключевые особенности новоявленной
шины, ее сходства и отличия от распространенных сейчас PCI и AGP.
Целью нашей работы является рассмотрение темы «Шина IBM совместимого ПК, и ее структура».
Перед нами стоят следующие задачи, такие как рассмотрение истории развития шины IBM PC до современного ПК, типы шин и их характеристика.
Слайд 3Шинная IBM совместимого с PC и ее структура.
Успех персонального компьютера
IBM PC был обусловлен в большой степени его открытой архитектурой,
позволяющей, с одной стороны, расширять функциональные возможности машины, добавляя новые модули (дополнительную память. Адаптеры внешних устройств и т.п.), а с другой стороны, гарантирующей широкому кругу пользователей и производителей оборудования работоспособность выпускаемых ими устройств на любом IBM-совместимом компьютере. Такую возможность предоставляет так называемая шинная архитектура компьютера. Шина представляет собой набор общих для всех компонентов компьютера проводников с фиксированным назначением сигналов.
Слайд 4Рис.1. Упрощенное представление шины компьютера.
Унифицированная система соединений позволяет любому компоненту
(и, что особенно важно, новому компоненту) взаимодействовать с любым другим
компонентом. Новые компоненты соединяются с шиной через слоты (разъемы) расширения. Подробнее о шинах компьютера можно прочитать, например, в [1,2]. Первая шина, разработанная IBM была 8-ми разрядной, т.е. по ней за один цикл передавались 8 двоичных разрядов (или один байт) данных.
Слайд 5Шинная IBM.
Позднее IBM и другие производители выпустили новые РС с
другими конфигурациями шин. До сих пор наиболее популярной остается шина
промышленной стандартной архитектуры (Industry Standard Architecture - ISA), разработанная фирмой IBM для персонального компьютера IBM PC/AT (поэтому эту шину часто называют AT-bus). ISA имеет 16-битовую шину данных, тактовую частоту 8 МГц и рассчитана на 98-контактный слот расширения. С появлением современных быстродействующих 32-х и 64-разрядных процессоров и скоростных жестких дисков стандартная шина стала "узким местом", ограничивающим производительность ЭВМ. Были разработаны 32-разрядные шины (MicroChannel Architecture - MCA, применяемая в IBM PS/2, и Extended Industry Standard Architecture - EISA).
Слайд 6Шинная IBM.
Однако, с появлением так называемых локальных шин, вопрос о
конфигурации основной шины ввода/вывода потерял свою остроту, поскольку процессор и
системная память смогли "общаться" с дисплейными адаптерами и контроллерами дисков с высокой скоростью на основной частоте синхронизации системы (обычно 25 или 33 Мгц) с разрядностью передаваемых одновременно данных, равной разрядности процессора. На основной шине остались относительно медленные устройства ввода/вывода, например, модемы, мышь, принтеры, звуковые платы и т.п.
Слайд 7Как говорилось выше, шины компьютера предназначены для подключения адаптеров внешних
устройств. Такими устройствами могут быть, например, аналого-цифровой и цифро-аналоговый преобразователи,
с помощью которых можно превратить ЭВМ в систему обработки аналоговых сигналов или систему управления неким внешним объектом. Однако, если не требуется высокая скорость ввода/вывода сигналов, то вовсе не обязательно разрабатывать адаптер, подключаемый к одной из шин компьютера. Задача решается гораздо проще, если подключить нужное устройство к одному из так называемых портов компьютера: параллельному или последовательному (как следует из названия, они различаются способами передачи цифровых данных: параллельно - 8 бит сразу, или последовательно - по одному биту друг за другом).
Слайд 8Развитие шины от IBM до современного ПК.
Первые разработки шины PCI,
стартовавшие в начале 90-х годов, были призваны избавиться от множества
присутствовавших на тот момент несовместимых шинных интерфейсов – VLB (VESA Local Bus), EISA, ISA и Micro Channel. Наряду с этим преследовалась цель избавиться от тяжкого наследия фрагментированной шины ISA и впервые добиться соединений класса "чип-чип".
На момент появления в 1993 году базовой версии шины Peripheral Component Interconnect (PCI) - IEEE P1386.1, предусматривались революционные усовершенствования: расширение шины данных до 32 бит, поддержка адресации до 4 ГБ данных (32 бита), а также использование режима синхронного обмена данными. По тем временам тактовая частота шины 33 МГц удовлетворяла условиям работы с периферией в настольных и серверных системах, все были довольны. Последовавший за этим резкий скачок тактовых частот процессоров и памяти привел к увеличению тактовой частоты PCI до 66 МГц, хотя, тактовые частоты процессоров за этот же период скакнули с 33 МГц до 3,0+ ГГц. Все последующие варианты PCI – AGP, PCI-X, MiniPCI, CardBus, несмотря на привнесение определенных дополнений, например, иных форм-факторов разъемов, новых сигнальных уровней и даже передачи данных по фронтам импульса (Double Data Rate/ Quadruple Data Rate), тем не менее, несли в себе ограничения, накладываемые самой топологией интерфейса.
Слайд 9Развитие шины.
Возможности наращивания пропускной способности шины PCI за счет увеличения
тактовой частоты без усложнения схем разводки и соответствующего адекватного удорожания
к настоящему времени исчерпаны полностью. А ведь на очереди появились такие актуальные интерфейсы, как 1/10 Gigabit Ethernet, IEEE 1394B, которые полностью выбирают пропускную возможность шины одним устройством и даже выходят за эти рамки. PCI душит рост скорости периферии, критичными становятся ограничения по числу сигнальных контактов шины, торможение процессов реального времени и требования по энергосбережению современных ПК. Если вспомнить наиболее производительные версии шины PCI, например, серверную PCI-X и графическую AGP, то в этом случае мы упираемся в укорачивание проводников шины за счет высокой частоты, требование к установке своего контроллера на каждый слот и достаточно высокую стоимость ее реализации.
Слайд 10Развитие шины от IBM.
Грядет тотальное торжество последовательных шин
Итого, параллельные шины
себя исчерпали, рано или поздно взоры разработчиков должны были обратиться
в сторону последовательных. Так оно и есть, в результате чего практически все современные индустриальные интерфейсы к настоящему времени перебрались на такой принцип обмена данными. Взгляните на приведенную ниже таблицу: речь идет не только о сетевых интерфейсах, которым на роду написано быть последовательными; все остальные ключевые шины уже имеют последовательную природу.
Между прочим, внешние интерфейсы уже давно перебрались на последовательную топологию, и в самых своих свежих реализациях – USB 2.0, IEEE1394b, показывают скорости, которые немыслимы для параллельных соединений. С этой точки зрения шина PCI в наших компьютерах действительно, выглядит своеобразным анахронизмом.
Слайд 11
Особенности PCI Express.
Основой нового интерфейса, как известно, в общем случае
будут являться дифференциальные сигнальные пары контактов, совершающие обмен данными по
схеме "точка-точка". Благодаря новой топологии мы сразу получаем массу положительных моментов: удешевление конструкции, снижение габаритов, более простая разводка печатных дорожек с упрощенными требованиями к борьбе с паразитными излучениями, и, главное, возможность работы на гораздо более высоких частотах, с поддержкой "горячей" замены периферийных устройств. Уходит в прошлое такой важный для параллельного интерфейса параметр, как нужда в синхронизации сигнальных линий всей шины.
Слайд 12Типы шин современного ПК и их характеристика.
Слайд 13Системные шины.
Основной обязанностью системной шины является передача информации между базовым
микропроцессором и остальными электронными компонентами компьютера. По этой шине осуществляется
также адресация устройств и происходит обмен специальными служебными сигналами. Таким образом, упрощенно системную шину можно представить как совокупность сигнальных линий, объединенных по их назначению (данные, адреса, управление). Передачей информации по шине управляет одно из подключенных к ней устройств или специально выделенный для этого узел, называемый арбитром шины.
Системная шина IBM PC и IBM PC/XT была предназначена. Для одновременной передачи только 8 бит информации, так как используемый в компьютерах микропроцессор 18088 имел 8 линий данных. Кроме того, системная шина включала 20 адресных линий, которые ограничивали адресное пространство пределом в 1 Мбайт. Для работы с внешними устройствами в этой шине были предусмотрены также 4 линии аппаратных прерываний (IRQ) и 4 линии для требования внешними устройствами прямого доступа в память (DMA, Direct Memory Access). Для подключения плат расширения использовались специальные 62-контактные Разъемы. Заметим, что системная шина и микропроцессор синхронизиоовались от одного тактового генератора с частотой 4,77 МГц. Таким образом, теоретически скорость передачи данных могла достигать более 4,5 Мбайта/с.
Слайд 14Системная шина.
Architecture), полностью реализующая возможности упомянутого микропроцессора. Она отличалась наличием
дополнительного 36-контактного разъема для соответствующих плат расширения. За счет этого
количество адресных линий было увеличено на четыре, а данных — на восемь. Теперь можно было передавать параллельно уже 16 разрядов данных, а благодаря 24 адресным линиям напрямую обращаться к 16 Мбайтам системной памяти. Количество линий аппаратных прерываний в этой шине было увеличено с 7 до 15, а каналов DMA — с 4 до 7. Надо отметить, что новая системная шина ISA полностью включала в себя возможности старой 8-разрядной шины, то есть все устройства, используемые в PC/XT, могли без проблем применяться и в PC/AT 286. Системные платы с шиной ISA уже допускали возможность синхронизации работы самой шины и микропроцессора разными тактовыми частотами, что позволяло устройствам, выполненным на платах расширения, работать медленнее, чем базовый микропроцессор. Это стало особенно актуальным, когда тактовая частота процессоров превысила 10—12 МГц. Теперь системная шина ISA стала работать асинхронно с процессором на частоте 8 МГц. Таким образом, максимальная скорость передачи теоретически может достигать 16 Мбайт/с.
Слайд 15Шина EISA.
С появлением новых микропроцессоров, таких, как i80386 и i486,
стало очевидно, что одним из вполне преодолимых препятствий на пути
повышения производительности компьютеров с этими микропроцессорами является системная шина ISA. Дело в том, что возможности этой шины для построения высокопроизводительных систем следующего поколения были практически исчерпаны. Новая системная шина должна была обеспечить наибольший возможный объем адресуемой памяти, 32-разрядную передачу данных, в том числе и в режиме DMA, улучшенную систему прерываний и арбитраж DMA, автоматическую конфигурацию системы и плат расширения. Такой шиной для IBM PC-совместимых компьютеров стала EISA (Extended Industry Standard Architecture). Заметим, что системные платы с шиной EISA первоначально были ориентированы на вполне конкретную область применения новой архитектуры, а именно на компьютеры, оснащенные высокоскоростными подсистемами внешней памяти на жестких магнитных дисках с буферной кэш-памятью. Такие компьютеры до сих пор используются в основном в качестве мощных файл-серверов или рабочих станций.
В EISA-разъем на системной плате компьютера помимо, разумеется, специальных EISA-плат может вставляться либо 8-, либо 16-разрядная плата расширения, предназначенная для обыкновенной PC/AT с шиной ISA. Это обеспечивается простым, но поистине гениальным конструктивным решением. EISA-разъемы имеют два ряда контактов, один из которых (верхний) использует сигналы шины ISA, а второй (нижний) — соответственно EISA. Контакты в соединителях EISA расположены так, что рядом с каждым сигнальным контактом находится контакт "Земля". Благодаря этому сводится к минимуму вероятность генерации электромагнитных помех, а также уменьшается восприимчивость к таким помехам.
Шина EISA позволяет адресовать 4-Гбайтное адресное пространство, доступное микропроцессорам 180386/486. Однако доступ к этому пространству могут иметь не только центральный процессор, но и платы управляющих устройств типа bus master — главного абонента (то есть устройства, способные управлять передачей данных по шине), а также устройства, имеющие возможность организовать режим DMA. Стандарт EISA поддерживает многопроцессорную архитектуру для "интеллектуальных" устройств (плат), оснащенных собственными микропроцессорами. Поэтому данные, например, от контроллеров жестких дисков, графических контроллеров и контроллеров сети могут обрабатываться независимо, не загружая при этом основной процессор.
Слайд 16EISA.
Теоретически максимальная скорость передачи по шине
EISA в так называемом
пакетном режиме (burst mode) может достигать 33 Мбайт/с. В обычном
(стандартном) режиме она не превосходит, разумеется, известных значений для ISA.
На шине EISA предусматривается метод централизованного Управления, организованный через специальное устройство — системный арбитр. Таким образом поддерживается использовало ведущих устройств на шине, однако возможно также предоставление шины запрашивающим устройствам по циклическому принципу.
Как и для шины ISA, в системе EISA имеется 7 каналов DMA. выполнение DMA-функций полностью совместимо с аналогичными операциями на ISA-шине, хотя они могут происходить и несколько быстрее. Контроллеры DMA имеют возможность поддерживать 8-, 16- и 32-разрядные режимы передачи данных. В общем случае возможно выполнение одного из четырех циклов обмена между устройством DMA и памятью системы. Это ISA-совместимые циклы, использующие для передачи данных 8 тактов шины; циклы типа А, исполняемые за б тактов шины; циклы типа В, выполняемые за 4 такта шины, и циклы типа С (или burst DMA), в которых передача данных происходит за один такт шины. Типы циклов А, В и С поддерживаются 8-, 16- и 32-разрядными устройствами, причем возможно автоматическое изменение размера (ширины) данных при передаче в не соответствующую размеру память. Большинство ISA-совместимых устройств, использующих DMA, могут работать почти в 2 раза быстрее, если они будут запрограммированы на применение циклов А или В, а не стандартных (и сравнительно медленных) ISA-циклов. Такая производительность достигается только путем улучшения арбитража шины, а не в ущерб совместимости с ISA. Приоритеты DMA в системе могут быть либо "вращающимися" (переменными), либо жестко установленными. Линии прерывания шины ISA, по которым запросы прерывания передаются в виде перепадов уровней напряжения (фронтов сигналов), сильно подвержены импульсным помехам
Слайд 17Плата EISA.
Поэтому в дополнение к привычным сигналам прерываний на шине
ISA, активным только по своему фронту, в системе EISA предусмотрены
также сигналы прерываний, активные по уровню. Причем для каждого прерывания выбор той или иной схемы активности может быть запрограммирован заранее. Собственно прерывания, активные по фронту, сохранены в EISA только для совместимости со "старыми" адаптерами ISA, обслуживание запросов на прерывание которых производит схема, чувствительная к фронту сигнала. Понятно, что прерывания, активные по уровню, менее подвержены шумам и помехам, нежели обычные. К тому же (теоретически) по одной и той же физической линии можно передавать бесконечно большое число уровней прерывания. Таким образом, одна линия прерывания может использоваться для нескольких запросов.
Для компьютеров с шиной EISA предусмотрено автоматическое конфигурирование системы. Каждый изготовитель плат расширения для компьютеров с шиной EISA поставляет вместе этими платами и специальные файлы конфигурации. Информация из этих файлов используется на этапе подготовки системы
работе, которая заключается в разделении ресурсов компьютера между отдельными платами. Для "старых" плат адаптеров пользователь должен сам подобрать правильное положение DIP-перекдючателей (рис. 25) и перемычек, однако сервисная программа на EISA-компьютерах позволяет отображать установленные положения соответствующих переключателей на экране монитора и дает некоторые рекомендации по правильной их установке. Помимо этого в архитектуре EISA предусматривается выделение определенных групп адресов ввода-вывода для конкретных слотов шины — каждому разъему расширения отводится адресный диапазон 4 Кбайта, что также позволяет избежать конфликтов между отдельными платами EISA.
Заметим, что компьютеры, использующие системные платы с шиной EISA, достаточно дорогие. К тому же шина по-прежнему тактируется частотой около 8—10 МГц, а скорость передачи увеличивается в основном благодаря увеличению разрядности шины данных.
Слайд 18Локальные шины.
Разработчики компьютеров, системные платы которых основывались на микропроцессорах 180386/486,
стали использовать раздельные шины для памяти и устройств ввода-вывода, что
позволило максимально задействовать возможности оперативной памяти, так как именно в данном случае память может работать с наивысшей для нее скоростью. Тем не менее, при таком подходе вся система не может обеспечить достаточной производительности, так как устройства, подключенные через разъемы расширения, не могут достичь скорости обмена, сравнимой с процессором. В основном это касается работы с контроллерами накопителей и видеоадаптерами. Для решения возникшей проблемы стали использовать так называемые локальные (local) шины, которые непосредственно связывают процессор с контроллерами периферийных устройств.
Первые IBM PC-совместимые компьютеры с локальными шинами не были, естественно, стандартизованы. Одним из ведущих изготовителей персональных компьютеров, впервые реализовавшим видеоподсистему с локальной шиной, была компания NEC Technologies. Еще в 1991 году эта фирма представила свою оригинальную разработку Image Video.
Слайд 19Шины VL-bus и PCI.
В последнее время появились две локальные шины,
признанные промышленными: VL-bus (или VLB), предложенная ассоциацией VESA (Video Electronics
Standards Association), и PCI (Peripheral Component Interconnect), разработанная фирмой Intel. Обе эти шины предназначены, вообще говоря, для одного и того же — для увеличения быстродействия компьютера, позволяя таким периферийным устройствам, как видеоадаптеры и контроллеры накопителей, работать с тактовой частотой до 33 МГц и выше. Обе шины используют разъемы типа МСА. На этом, впрочем, их сходство и заканчивается, поскольку требуемая цель достигается разными средствами.
Если VL-bus является, по сути, расширением шины процессора (вспомним шину IBM PC/XT), то PCI по своей организации более тяготеет к системным шинам, например к EISA, и представляет собой абсолютно новую разработку. Строго говоря, PCI относится к классу так называемых mezzanine-шин, то есть шин-"пристроек", поскольку между локальной шиной процессора и самой PCI находится специальная микросхема согласующего "моста" (bridge).
Слайд 20VL-BUS и PCI шины.
Так как VL-bus продолжает шину процессора без
промежуточных буферов, ее схемная реализация оказывается более дешевой и простой.
Первая спецификация VESA, в частности, предусматривает, что к шине, которая является локальной 32-разрядной шиной системного микропроцессора, может подключаться до трех периферийных устройств. Некоторые изготовители, впрочем, убеждены, что добиться устойчивой работы трех устройств на высоких частотах вообще невозможно, и устанавливают на свои платы только 2 слота. Ограничение на число устройств связано с тем, что электрическая нагрузочная способность на сигнальные линии любого процессора весьма невелика.
В качестве устройств, подключаемых к VL-bus, в настоящее время выступают контроллеры накопителей, видеоадаптеры и сетевые платы. Конструктивно VL-bus выглядит как короткий соединитель типа МСА (112 контактов), установленный, например, рядом с разъемами расширения ISA или EISA. При этом 32 линии используются для передачи данных и 30 — для передачи адреса. Максимальная скорость передачи по шине VL-bus теоретически может составлять около 130 Мбайт/с. Стоит отметить, что на VL-bus не предусмотрен арбитр шины. К счастью, большинство подключаемых к ней устройств являются "пассивными", то есть сами не инициируют передачу данных. Тем не менее, во избежание возможных конфликтов между подключенными к шине устройствами в спецификации выделяются "управляющие" (master) и "управляемые" (slave) адаптеры. Для "управляющих" устройств на системных платах обычно определены свои "мастерные" слоты. По замыслу разработчиков, подобные "управляющие" устройства могли осуществлять арбитраж на шине.
Слайд 21Стандарт PCMCIA.
Устройства, соответствующие первой версии стандарта PCMCIA, задумывались как альтернатива
относительно тяжелым и энергоемким приводам флоппи-дисков в портативных компьютерах. Напомним,
что "загадочная" аббревиатура PCMCIA означает не что иное, как Personal Computer Memory Card International Association. Кстати, принятая этой ассоциацией спецификация была сразу поддержана такими фирмами, как IBM, AT&T, Intel, NCR и Toshiba. Сегодня данный стандарт поддерживают уже около 300 производителей. PCMCIA-устройства размером с обычную кредитную карточку являются альтернативой обычным платам расширения, подключаемым к системной шине. Сегодня в этом стандарте выпускаются модули памяти, модемы и факс-модемы, SCSI-адаптеры, сетевые карты, звуковые карты, винчестеры и т.д. Особой популярностью пользуются PCMCIA-карты флэш-памяти, которые не теряют информацию при выключении питания, обладают высоким быстродействием и могут быть использованы в качестве винчестера без движущихся частей.
Слайд 22Шины типа PCMCIA.
Кстати, и для настольных компьютеров разработаны уже адаптеры
для PCMCIA-устройств. Под адаптером PCMCIA понимается плата расширения, которая вставляется
обычно в слот системной шины и соединяется с разъемом PCMCIA ленточным кабелем. Сам разъем PCMCIA размещается в стандартном отсеке с форм-фактором 3,5 или 5,25 дюйма.
Первая версия стандарта PCMCIA (release 1.0) была введена в августе 1990 года и поддерживала все типы памяти, исключая динамическую память DRAM. Таким образом, в спецификацию были включены: статическая память SRAM; псевдостатическая память PSRAM; постоянная (масочная) память ROM; однократно программируемая постоянная память PROM (или OTPROM — One-Time Programmable ROM); стираемая ультрафиолетом перепрограммируемая память UV-EPROM (Ultraviolet Erasable PROM); электрически стираемая перепрограммируемая память EEPROM (Electrically Erasable PROM) и флэш-память (Hash). Работа ассоциации PCMCIA над одноименной спецификацией проходила в тесном контакте с организацией JEIDA (Japan Electronic Industry Development Association) в Японии. Поэтому стандарт часто называют PCMCIA/JEIDA.
Слайд 23Развитие шины PCMCIA.
Уже в сентябре 1991 года появилась вторая версия
спецификации (release 2.0), которая включала в себя новые особенности, такие,
как поддержка устройств ввода-вывода, дополнительный сервис для модулей флэш-памяти. Поддержка модулей с двойным" напряжением питания (5 и 3 В) и так называемый XIP механизм (eXecute-In-Place). Заметим, что XIP-механизм обеспечивает выполнение программ непосредственно в пространстве PCMCIA-модуля памяти, экономя тем самым системную память компьютера.
Надо отметить, что вместе с версией 2.0 ассоциация PCMCIA разработала новую спецификацию SSIS (Socket Services Interface Specification), которая устанавливает стандартный набор системных вызовов для работы с PCMCIA-модулями. SSIS выполнена в виде BIOS, что позволяет сохранить независимость используемых аппаратных средств, но гарантировать при этом программную совместимость. Первая версия SSIS была принята ассоциацией PCMCIA в августе 1991 года, а через месяц появилась уже слегка модифицированная версия SSIS — release 1.01. В последней версии SSIS были улучшены некоторые ранее определенные функции и введена поддержка защищенного режима процессоров. Более высокий уровень программных операций (так называемый Card Services) с PCMCIA-модулями бы предложен только в начале 1992 года.
Слайд 24PCMCIA.
Новая версия спецификации позволяет называть PCMCIA-модули просто PC Card(s). Итак,
стандарт PCMCIA для связи между PC Card и соответствующим устройством
(адаптером или портом) компьютера определяет 68-контактный механический соединитель. На нем выделены 16 разрядов под данные и 26 разрядов под адрес, что позволяет непосредственно адресовать 64 Мбайта памяти. Хотя некоторые выводные контакты предназначены для сигналов, необходимых при работе с памятью, эти же контакты могут использоваться и для иных сигналов, рассчитанных на работу с устройствами ввода-вывода. Разумеется, перед этим происходит так называемая переконфигурация выводов. Например, контакт для сигнала RDY/BSY (готов/занят), необходимый при работе с определенными типами памяти, может использоваться для сигнала IREQ (запрос прерывания).
На стороне модуля PC Card расположен соединитель-розетка (female), а на стороне компьютера — соединитель-вилка (male). Кроме того, стандарт определяет три различные длины контактов соединителя-вилки. Такое решение легко объяснимо. Поскольку подключение и отключение PC Card может происходить при работающем компьютере (так называемое горячее), то для того, чтобы на модуль сначала подавалось напряжение питания, а лишь затем напряжение сигнальных линий, соответствующие контакты выполнены более длинными. Понятно, что при отключении PCMCIA-модуля все происходит в обратном порядке. Вторая версия спецификации PCMCIA определяет только три типа габаритньк размеров для PC Card (Type I, Type II и Type III), к ним должен быть добавлен и четвертый — Type IV. Два первых типа ограничивают размеры PC Card до 54 мм (2,12 дюйма) в ширину и 85,6 мм (3,37 дюйма) в длину. PCMCIA-модули, соответствующие размерам Type I, должны иметь толщину 3,3 мм, а соответствующие Type II — 5,0 мм в середине и 3,3 мм по краям. Это обеспечивает "геометрическую" совместимость PC Card первого и второго типов. PC Card Туре III имеют толщину 10,5 мм и, разумеется, непригодны для использования в слотах для модулей Туре I и II (см. рис. 27). Для третьего типа модулей необходимы так называемые слоты двойной высоты. Заметим, однако, что толщина модуля Туре III по краям также равна 3,3 мм. Именно такие модули предназначены для размещения 1,3-дюймовых винчестеров.
Слайд 25Версии PCMCIA.
Добавления ко второй версии стандарта PCMCIA предусматривают увеличение длины
модулей, соответствующих размерам Type I и II, до 5,73 дюйма.
Такая конструкция особенно важна для модулей модемов (факс-модемов), на которых, как известно, должен устанавливаться разъем типа RJ-11.
Помимо габаритных размеров стандарт PCMCIA предписывает размещение переключателя защиты записи, внутреннего источника тока, марки изготовителя, в случае если таковые имеются. Надо отметить, что "теплолюбивые" PC Cards должны нормально функционировать при температуре от 0 до 55 градусов по Цельсию.
Слайд 26Заключение.
Целью моей работы было рассмотрение темы «Шина IBM совместимого ПК,
и ее структура». Все поставленные цели и задачи были выполнены
в данной работе. Я рассмотрел историю развития шины от IBM до современного ПК и их характеристику.
Моя работа располагается на 23 страницах печатного текста.
При написании работы были использованы материалы периодической печати и сайты интернета.
Слайд 27Список использованных источников.
Питер Нортон, Кори Сандлер, Том Баджет, Персональный компьютер
изнутри. М.: Бином, 1995.
Левкин Г.Н., Левкина В.Е. Введение в схемотехнику
ПЭВМ IBM AT. М.:МПИ, 1991.
Джордейн. Справочник программиста персонального компьютера IBM PC.
Ред. Якубовский С.В. Аналоговые и цифровые интегральные схемы. М.:Радио и связь, 1985.
В.Э. Фигурнов, “IBM PC для пользователя. Краткий курс” , Москва, “Инфра-М”, 1998 г.
http://www.computerra.ru/offline/2004/547/34177/
http://www.ferra.ru/online/system/25481/
http://www.thg.ru/graphic/20040311/index.html
http://www.samosbor.ru/shin/shin5.shtml
http://www.ixbt.com/mainboard/pci-e-2.shtml
http://www.hardwareportal.ru/News/index.html
http://www.ibusiness.ru/marcet/dictionary/34699/
Слайд 28СГСЭУ 2013.
Подготовил преззентацию по Информатике студент 2 курса, Белянин Артём.Юридического
факультета.3 группы.Таможенного дела.