Разделы презентаций


Задачи на построение. 7 класс

В геометрии выделяют задачи на построение, которые можно решить только с помощью двух инструментов: циркуля и линейки без масштабных делений. Линейка позволяет провести произвольную

Слайды и текст этой презентации

Слайд 1Задачи на построение.
7 класс

Задачи на построение.7 класс

Слайд 2 В геометрии выделяют задачи на построение, которые

можно решить только с помощью двух инструментов: циркуля и линейки

без масштабных делений.

Линейка позволяет провести произвольную
прямую, а также построить прямую, проходящую
через две данные точки; с помощью циркуля
можно провести окружность произвольного
радиуса, а также окружность с центром в
данной точке и радиусом, равным данному
отрезку.

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

В геометрии выделяют задачи на построение, которые можно решить только с помощью двух инструментов:

Слайд 3Неразрешимые задачи
Следующие три задачи на построение были поставлены ещё в

античности:
Трисекция угла — разбить произвольный угол на три равные части.


Удвоение куба — построить отрезок, являющийся ребром куба в два раза большего объёма, чем куб с данным ребром.
Квадратура круга — построить квадрат, равный по площади данному кругу.
Только в XIX веке было доказано, что все три задачи не разрешимы циркулем и линейкой. Вопрос возможности построения полностью решён алгебраическими методами, основанными на теории Галуа.
Неразрешимые задачиСледующие три задачи на построение были поставлены ещё в античности:Трисекция угла — разбить произвольный угол на

Слайд 4А
В
С
Построение угла, равного данному.
Дано: угол А.
О
D
E
Теперь докажем, что построенный угол

равен данному.

АВСПостроение угла, равного данному.Дано: угол А.ОDEТеперь докажем, что построенный угол равен данному.

Слайд 5Построение угла, равного данному.
Дано: угол А.
А
Построили угол О.
В
С
О
D
E
Доказать: А

= О
Доказательство: рассмотрим треугольники АВС и ОDE.
АС=ОЕ, как радиусы

одной окружности.
АВ=ОD, как радиусы одной окружности.
ВС=DE, как радиусы одной окружности.
АВС= ОDЕ (3 приз.) А = О
Построение угла, равного данному.Дано: угол А.АПостроили угол О.ВСОDEДоказать:  А =  ОДоказательство: рассмотрим треугольники АВС и

Слайд 6биссектриса
Построение биссектрисы угла.

биссектрисаПостроение биссектрисы угла.

Слайд 7Докажем, что луч АВ – биссектриса А

П Л А Н
Дополнительное построение.
Докажем равенство

треугольников ∆ АСВ и ∆ АDB.




3. Выводы

А

В

С

D

АС=АD, как радиусы одной окружности.
СВ=DB, как радиусы одной окружности.
АВ – общая сторона.

∆АСВ = ∆ АDВ, по III признаку
равенства треугольников

Луч АВ – биссектриса

Докажем, что луч АВ – биссектриса   А    П Л А НДополнительное построение.Докажем

Слайд 8Постройте луч ОС так, чтобы луч ОА был биссектрисой угла

ВОС.
Р

е ш е н и е.
Проведём окружность произвольного радиуса с центром О. Она пересечёт лучи ОА и ОВ в точках А1 и В1.
2) Проведём окружность радиуса А1 В1 с центром А1 .Она пересечёт первую окружность в точках С и ___.
3) Проведём луч ОС. Докажем, что луч ОС искомый. Действительно, ΔОА1В1= _______
по трём_____________, поэтому ے АОВ =_______,
т.е. луч ОА - _____________________ угла ВОС

Постройте луч ОС так, чтобы луч ОА был биссектрисой угла ВОС.

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика