Разделы презентаций


Законы сохранения механики

Содержание

Содержание:Закон Сохранения ИмпульсаЗакон Сохранения Механической ЭнергииРабота и Энергия

Слайды и текст этой презентации

Слайд 1Законы сохранения механики
Гасанов Рамин
10 «А»

Законы сохранения механикиГасанов Рамин 10 «А»

Слайд 2Содержание:
Закон Сохранения Импульса
Закон Сохранения Механической Энергии
Работа и Энергия

Содержание:Закон Сохранения ИмпульсаЗакон Сохранения Механической ЭнергииРабота и Энергия

Слайд 3Закон Сохранения Импульса
Импульсом называют векторную величину, равную произведению массы тела

на ее скорость:

Закон Сохранения ИмпульсаИмпульсом называют векторную величину, равную произведению массы тела на ее скорость:

Слайд 4Закон Сохранения Импульса
При взаимодействии тел замкнутой системы полный импульс системы

остается неизменным:

Закон Сохранения ИмпульсаПри взаимодействии тел замкнутой системы полный импульс системы остается неизменным:

Слайд 5Закон Сохранения Импульса

Закон сохранения импульса есть следствие второго и третьего

законов Ньютона.

Рассмотрим пример использования закона сохранения импульса.

Закон Сохранения ИмпульсаЗакон сохранения импульса есть следствие второго и третьего законов Ньютона. Рассмотрим пример использования закона сохранения

Слайд 6Закон Сохранения Импульса
Рассмотрим неупругое столкновение, при котором выполняется закон сохранения

импульса. Пусть при абсолютно неупругом столкновении двух тел их скорость

будет общей после удара. Ее нужно определить. Напишем векторное уравнение, соответствующее закону сохранения импульса системы:


Закон Сохранения ИмпульсаРассмотрим неупругое столкновение, при котором выполняется закон сохранения импульса. Пусть при абсолютно неупругом столкновении двух

Слайд 7Закон Сохранения Импульса


После проецирования векторов на выбранную ось получим скалярное

уравнение, которое позволит определить искомую величину


V общ = m1V1+m2V2
(m1+m2)

Закон Сохранения ИмпульсаПосле проецирования векторов на выбранную ось получим скалярное уравнение, которое позволит определить искомую величину

Слайд 8Закон Сохранения Импульса
Еще один пример - реактивное движение. Рассмотрим простейший

случай этого движения, при котором происходит одномоментное взаимодействие - выстрел

из винтовки. До выстрела скорости винтовки и пули были равны нулю. После выстрела они имели различные скорости. Если известна скорость пули, ее масса и масса ружья, можно определить скорость, которую приобрело ружье после выстрела:

Отсюда после проецирования векторов на выбранную ось получим:

Закон Сохранения ИмпульсаЕще один пример - реактивное движение. Рассмотрим простейший случай этого движения, при котором происходит одномоментное

Слайд 92. Закон Сохранения Механической Энергии
Если в замкнутой системе не

действуют силы, трения и силы сопротивления, то сумма кинетической и

потенциальной энергии всех тел системы остается величиной постоянной.

Рассмотрим пример проявления этого закона. Пусть тело, поднятое над Землей, обладает потенциальной энергией Е1 = mgh1 и скоростью v1 направленной вниз. В результате свободного падения тело переместилось в точку с высотой h2 (E2 = mgh2), при этом скорость его возросла от v1 до v2. Следовательно, его кинетическая энергия возросла от

ДО

2.  Закон Сохранения Механической Энергии Если в замкнутой системе не действуют силы, трения и силы сопротивления,

Слайд 102. Закон Сохранения Механической Энергии
Запишем уравнение кинематики:

2.  Закон Сохранения Механической Энергии Запишем уравнение кинематики:

Слайд 112. Закон Сохранения Механической Энергии
Умножим обе части равенства на

mg, получим:
После преобразования получим:

2.  Закон Сохранения Механической ЭнергииУмножим обе части равенства на mg, получим:После преобразования получим:

Слайд 122. Закон Сохранения Механической Энергии
Рассмотрим ограничения, которые были сформулированы

в законе сохранения полной механической энергии. Что же происходит с

механической энергией, если в системе действует сила трения? В реальных процессах, где действуют силы трения, наблюдается отклонение от закона сохранения механической энергии.
2.  Закон Сохранения Механической ЭнергииРассмотрим ограничения, которые были сформулированы в законе сохранения полной механической энергии. Что

Слайд 132. Закон Сохранения Механической Энергии
Например, при падении тела на

Землю сначала кинетическая энергия тела возрастает, поскольку увеличивается скорость. Возрастает

и сила сопротивления, которая увеличивается с возрастанием скорости. Со временем она будет компенсировать силу тяжести, и в дальнейшем при уменьшении потенциальной энергии относительно Земли кинетическая энергия не возрастает. Это явление выходит за рамки механики, поскольку работа сил сопротивления приводит к изменению температуры тела. Нагревание тел при действии трения легко обнаружить, потерев ладони друг о друга.

2.  Закон Сохранения Механической ЭнергииНапример, при падении тела на Землю сначала кинетическая энергия тела возрастает, поскольку

Слайд 142. Закон Сохранения Механической Энергии
Таким образом, в механике закон

сохранения энергии имеет довольно жесткие границы. Изменение тепловой (или внутренней)

энергии возникает в результате работы сил трения или сопротивления. Оно равно изменению механической энергии. Таким образом, сумма полной энергии тел при взаимодействии есть величина постоянная (с учетом преобразования механической энергии во внутреннюю). Энергия измеряется в тех же единицах, что и работа. В итоге отметим, что изменить механическую энергию можно только одним способом - совершить работу
2.  Закон Сохранения Механической ЭнергииТаким образом, в механике закон сохранения энергии имеет довольно жесткие границы. Изменение

Слайд 153. Работа и Энергия
Термин "работа" в механике имеет два

смысла: работа как процесс, при котором сила перемещает тело, действуя

под углом, отличном от 90°; работа - физическая величина, равная произведению силы, перемещения и косинуса угла между направлением действия силы и перемещением:

А = Fs cos a.
3.  Работа и Энергия Термин

Слайд 163. Работа и Энергия
Работа равна нулю, когда тело движется

по инерции (F = 0), когда нет перемещения (s =

0) или когда угол между перемещением и силой равен 90° (cos а = 0). Единицей работы в СИ служит джоуль (Дж). 1 джоуль - это такая работа, которая совершается силой 1 Н при перемещении тела на 1 м по линии действия силы. Для определения быстроты совершения работы вводят величину "мощность". Мощность равняется отношению совершенной работы ко времени, за которое она выполнена:

Единицей мощности в СИ служит 1 ватт (Вт). 1 Вт - мощность, при которой совершается работа в 1 Дж за 1 секунду.

3.  Работа и ЭнергияРабота равна нулю, когда тело движется по инерции (F = 0), когда нет

Слайд 173. Работа и Энергия
Рассмотрим действие на тело некоторой постоянной

силы F. На участке пути s будет произведена работа А.

В результате у тела изменится скорость:



Величину

для материальной точки называют кинетической энергией

тела.

3.  Работа и ЭнергияРассмотрим действие на тело некоторой постоянной силы F. На участке пути s будет

Слайд 183. Работа и Энергия
Кинетическая энергия - энергия движения, ею

обладают все движущиеся тела. Эта величина является относительной, то есть

она изменяется в зависимости от выбранной системы отсчета. Кроме этого вида механической энергии, существует и другой ее вид - потенциальная энергия. Рассмотрим систему двух взаимодействующих тел. Например, тела, поднятого над Землей, и саму Землю.
3.  Работа и ЭнергияКинетическая энергия - энергия движения, ею обладают все движущиеся тела. Эта величина является

Слайд 193. Работа и Энергия
Работа силы тяжести при перемещении тела

на отрезке |h1 - h2| будет равна:
Величину mgh в соответствующей

точке, которая расположена на высоте h, называют потенциальной энергией тела, находящегося в поле тяжести.
3.  Работа и ЭнергияРабота силы тяжести при перемещении тела на отрезке |h1 - h2| будет равна:Величину

Слайд 203. Работа и Энергия
Из предыдущего уравнения вытекает, что работа

не зависит от траектории движения в доле силы тяжести, а

определяется лишь изменением высоты. Потенциальная энергия характеризует и другие взаимодействующие тела. Так, потенциальной энергией обладает сжатая пружина:

где k - модуль упругости, х - смещение от положения равновесия. Потенциальная энергия, как и кинетическая, является величиной относительной, поскольку и высота, и смещение зависят от выбора точки отсчета.

3.  Работа и ЭнергияИз предыдущего уравнения вытекает, что работа не зависит от траектории движения в доле

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика