Разделы презентаций


Понятие движения 9 класс

Содержание

Цели урока:Рассмотреть осевую и центральную симметрии.Ввести понятие отображения плоскости на себя и движения.

Слайды и текст этой презентации

Слайд 1Понятие движения.


Понятие движения.

Слайд 2Цели урока:
Рассмотреть осевую и центральную симметрии.
Ввести понятие отображения плоскости на

себя и движения.

Цели урока:Рассмотреть осевую и центральную симметрии.Ввести понятие отображения плоскости на себя и движения.

Слайд 3Повторение. Осевая симметрия.
Постройте точки симметричные А и В относительно прямой l.


l
A
В


А1

В1


А
В











А2

Повторение. Осевая симметрия.Постройте точки симметричные А и В относительно прямой l.lAВА1В1АВА2

Слайд 4Повторение. Осевая симметрия.
Постройте фигуры, симметричные данным относительно оси l.

l
F
K
L
l

C
D
N
M

Повторение. Осевая симметрия.Постройте фигуры, симметричные данным относительно оси l.lFKLlCDNM

Слайд 5Ответьте на вопросы:
В какую фигуру отобразился треугольник?
В какую фигуру отобразилась

трапеция?




Сохранилось ли расстояние между
точками?

Ответьте на вопросы:В какую фигуру отобразился треугольник?В какую фигуру отобразилась трапеция?Сохранилось ли расстояние между точками?

Слайд 6Повторение. Центральная симметрия.
Постройте точки, симметричные данным относительно точки О.




О
А
В
С



А1



В1

С1


Повторение. Центральная симметрия.Постройте точки, симметричные данным относительно точки О. ОАВСА1В1С1

Слайд 7Повторение. Центральная симметрия.
Постройте фигуры, симметричные данным относительно точки О.

F
K
L

C
D
N
M


О
О

Повторение. Центральная симметрия.Постройте фигуры, симметричные данным относительно точки О.FKLCDNMОО

Слайд 8Ответьте на вопросы:
В какую фигуру отобразился треугольник?
В какую фигуру отобразилась

трапеция?




Сохранилось ли расстояние между
точками?

Ответьте на вопросы:В какую фигуру отобразился треугольник?В какую фигуру отобразилась трапеция?Сохранилось ли расстояние между точками?

Слайд 9Найдите соответствия:








Каждой точке плоскости ставится в
соответствие какая-то точка этой

же
плоскости, причем любая точка плоскости
оказывается сопоставленной некоторой точке.
Говорят, что

дано отображение
плоскости на себя.
(Осевая и центральная симметрии)

Отображение плоскости на себя,
сохраняющее расстояние, называют движением

Найдите соответствия:Каждой точке плоскости ставится в соответствие какая-то точка этой же плоскости, причем любая точка плоскостиоказывается сопоставленной

Слайд 10Задача 1.
Пусть М и N какие-либо точки, l – ось

симметрии. М1 и N1 – точки, симметричные точкам М и

N относительно прямой l. Докажите, что расстояние между точками М и N при осевой симметрии сохраняется, т.е. МN = M1N1.


l

M

N

M1

N1

Задача 1.Пусть М и N какие-либо точки, l – ось симметрии. М1 и N1 – точки, симметричные

Слайд 11Задача 1. Подсказки:
Из точек N и N1 опустите перпендикуляры на

прямую ММ1
Докажите, что ∆MNK = ∆M1N1K1.
Докажите, что МN = М1N1.

l
M
N
M1
N1


К
К1

Задача 1. Подсказки:Из точек N и N1 опустите перпендикуляры на прямую ММ1Докажите, что ∆MNK = ∆M1N1K1.Докажите, что

Слайд 12Задача 2. (№3)
Докажите, что центральная симметрия есть движение.
Подсказки:
Возьмите точки

М и N и О – центр симметрии.
Постройте точки

М1 и N1 относительно точки О.
Докажите, что ∆ОМN = ∆OM1N1.
Докажите, что МN = M1N1.

Удачи!


Отображение плоскости
на себя,
сохраняющее расстояние,
называют движением

Задача 2. (№3)Докажите, что центральная симметрия есть движение.Подсказки: Возьмите точки М и N и О – центр

Слайд 13Домашнее задание:
Пп. 113, 114;
№№ 1148, 1149.

Домашнее задание:Пп. 113, 114; №№ 1148, 1149.

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика