Разделы презентаций


Решение заданий В8 ЕГЭ по математике 11 класс

На рисунке изображен график функции у = f(x), определенной на интервале (−5; 5). Найдите количество точек в которых производная f’(x) равна 0Ответ : 4

Слайды и текст этой презентации

Слайд 1Решение заданий В8 ЕГЭ по математике

Решение заданий В8  ЕГЭ по математике

Слайд 2На рисунке изображен график функции у = f(x), определенной на

интервале (−5; 5). Найдите количество точек в которых производная f’(x) равна

0

Ответ : 4

На рисунке изображен график функции у = f(x), определенной на интервале (−5; 5). Найдите количество точек в которых

Слайд 3 На рисунке изображен график производной функции f(x), определенной на интервале

(−10; 8). Найдите количество точек максимума функции f(x) на отрезке [−9;6].


Решение. Точки максимума соответствуют точкам смены знака производной с плюса на минус. На отрезке [−9;6] функция имеет две точки максимума x = − 4 и x = 4. Ответ: 2.


На рисунке изображен график производной функции f(x), определенной на интервале (−10; 8). Найдите

Слайд 4 На рисунке изображен график функции y=f(x), определенной на интервале (−1;

12). Определите количество целых точек, в которых производная функции отрицательна.


Решение.


Производная функции отрицательна на тех интервалах, на которых функция убывает, т. е. на интервалах (0,5; 3), (6; 10) и (11; 12). В них содержатся целые точки 1, 2, 7, 8 и 9. Всего 5 точек. Ответ: 5.

На рисунке изображен график функции y=f(x), определенной на интервале

Слайд 5 На рисунке изображен график производной функции f(x), определенной на интервале

(−10; 4). Найдите промежутки убывания функции f(x). В ответе укажите

длину наибольшего из них.

Решение. Промежутки убывания функции f(x) соответствуют промежуткам, на которых производная функции отрицательна, то есть интервалу (−9; −6) длиной 3 и интервалу (−2; 3) длиной 5. Длина наибольшего из них равна 5. Ответ: 5.

На рисунке изображен график производной функции f(x), определенной на интервале (−10; 4). Найдите промежутки

Слайд 6На рисунке изображен график производной функции f(x), определенной на интервале

(−7; 14). Найдите количество точек максимума функции f(x) на отрезке [−6; 9].


Решение. Точки максимума соответствуют точкам смены знака производной с положительного на отрицательный. На отрезке [−6; 9] функция имеет одну точку максимума x = 7. Ответ: 1.

На рисунке изображен график производной функции f(x), определенной на интервале (−7; 14). Найдите количество точек максимума функции f(x)

Слайд 7 На рисунке изображен график производной функции f(x), определенной на интервале

(−8; 6). Найдите промежутки возрастания функции f(x). В ответе укажите

длину наибольшего из них.

Решение. Промежутки возрастания функции f(x) соответствуют промежуткам, на которых производная функции положительна, то есть интервалам (−7; −5), (2; 5). Наибольший из них — интервал (2; 5), длина которого 3.

На рисунке изображен график производной функции f(x), определенной на интервале (−8; 6). Найдите промежутки

Слайд 8 На рисунке изображен график производной функции f(x), определенной на интервале

(−7; 10). Найдите количество точек минимума функции f(x) на отрезке [−3; 8].
Решение. Точки

минимума соответствуют точкам смены знака производной с минуса на плюс. На отрезке [−3; 8] функция имеет одну точку минимума x = 4. Ответ: 1.
На рисунке изображен график производной функции f(x), определенной на интервале (−7; 10). Найдите количество точек минимума

Слайд 9 На рисунке изображен график производной функции f(x), определенной на интервале

(−16; 4). Найдите количество точек экстремума функции f(x) на отрезке [−14; 2].
Решение. Точки

экстремума соответствуют точкам смены знака производной — изображенным на графике нулям производной. Производная обращается в нуль в точках −13, −11, −9, −7. На отрезке [−14; 2] функция имеет 4 точки экстремума. Ответ: 4.
На рисунке изображен график производной функции f(x), определенной на интервале (−16; 4). Найдите количество точек

Слайд 10 На рисунке изображен график функции y=f(x), определенной на интервале (−2; 12).

Найдите сумму точек экстремума функции f(x).
Решение. Заданная функция имеет максимумы

в точках 1, 4, 9, 11 и минимумы в точках 2, 7, 10. Поэтому сумма точек экстремума равна 1 + 4 + 9 + 11 + 2 + 7 + 10 = 44. Ответ: 44.
На рисунке изображен график функции y=f(x), определенной на интервале (−2; 12). Найдите сумму точек экстремума функции f(x).

Слайд 11 На рисунке изображён график функции y=f(x) и касательная к нему

в точке с абсциссой x0. Найдите значение производной функции f(x)

в точке x0.

Решение. Значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс. Построим треугольник с вершинами в точках A (2; −2), B (2; 0), C (−6; 0). Угол наклона касательной к оси абсцисс будет равен углу, смежному с углом ACB

На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой

Слайд 12На рисунке изображен график функции y = f(x) и касательная

к этому графику в точке абсциссой, равной 3. Найдите значение

производной этой функции в точке x = 3.

Для решения используем геометрический смысл производной: значение производной функции в точке равняется угловому коэффициенту касательной к графику этой функции, проведенной в этой точке. Угловой коэффициент касательной равен тангенсу угла между касательной и положительным направлением оси х (tg α). Угол α = β, как накрест лежащие углы при параллельных прямых y=0, y=1 и секущей-касательной. Для треугольника ABC

На рисунке изображен график функции y = f(x) и касательная к этому графику в точке абсциссой, равной

Слайд 13На рисунке изображены график функции y=f(x)  и касательная к нему

в точке с абсциссой xо  . Найдите значение производной функции

f(x)  в точке xо   .

По свойствам касательной, формула касательной к функции f(x)  в точке x 0   равна
y=f ′ (x 0 )⋅x+b,  b=const 
По рисунку видно, что касательная к функции f(x)  в точке x0   проходит через точки (-3;2), (5,4). Следовательно, можно составить систему уравнений

На рисунке изображены график функции y=f(x)  и касательная к нему в точке с абсциссой xо  . Найдите

Слайд 14 На рисунке изображен график y=f’(x) - производной функции f(x), определенной

на интервале (−6; 6). Найдите количество точек, в которых касательная к

графику f(x) параллельна прямой у = -3х-11 или совпадает с ней.

Ответ : 4

k = -3
f’(x0)=-3

На рисунке изображен график y=f’(x) - производной функции f(x), определенной на интервале (−6; 6). Найдите количество точек,

Слайд 17Источники
http://reshuege.ru/
http://egemat.ru/prepare/B8.html
http://bankege.ru/


Источникиhttp://reshuege.ru/http://egemat.ru/prepare/B8.htmlhttp://bankege.ru/

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика