Разделы презентаций


Trigonometry (Sum and Differece Formulas)

Содержание

The students will learn Introduction trigonometric ratios of the sum or difference of two arcs, half-angle formulas, conversion and inverse conversion formulas.

Слайды и текст этой презентации

Слайд 1Sum and Difference Formulas in Trigonometry

Sum and Difference Formulas in Trigonometry

Слайд 2The students will learn
Introduction
trigonometric ratios of the sum

or difference of two arcs,
half-angle formulas,
conversion and inverse

conversion formulas.
The students will learn Introduction trigonometric ratios of the sum or difference of two arcs, half-angle formulas,

Слайд 3Trigonometric Ratios of The Sum or Difference of Two Arcs

Theorem

1.4
Theorem 1.5
Theorem 1.6
Theorem 1.7

Trigonometric Ratios of  The Sum or Difference of Two ArcsTheorem 1.4Theorem 1.5Theorem 1.6Theorem 1.7

Слайд 4Theorem 1.4
If a and b are two real numbers, then
Theorem

1.5
BACK

Theorem 1.4If a and b are two real numbers, thenTheorem 1.5BACK

Слайд 5Proof-1 cos(a+b) = cos a . cos b - sin a

. sin b

Since the lenghts of arc AP and AP’

are equal then ⏐AR⏐=⏐P’Q⏐.
If is the distance between two points (x1,y1) and (x2,y2),
then the distance formula will be as follows then


⏐AR⏐=⏐P’Q⏐⇒⏐AR⏐2=⏐P’Q⏐2
(cos(a+b)-1)2 + (sin(a+b)- 0)2 = (cos a – cos b)2 + (sin b + sin a)2
cos2(a+b) – 2cos(a+b) + 1 + sin2(a+b) = cos2a –2cosa.cosb + cos2b + sin2b + 2sina. sinb + sin2a
2 – 2cos(a+b) = 2 – 2cosa.cosb + 2sinb.sina
cos(a+b) = cosa. cosb – sina. sinb



Full Screen

BACK

Example-1

Proof-1 cos(a+b) = cos a . cos b - sin a . sin bSince the lenghts of

Слайд 6Full screen
BACK

Full screenBACK

Слайд 7Example-1:
Solution-1
cos 75o = ?

Example-1:Solution-1cos 75o = ?

Слайд 8Solution-1:
cos 75º = cos ( 45º + 30º )
=

cos 45º.cos 30º - sin 45º. sin 30º
BACK

Solution-1:cos 75º = cos ( 45º + 30º ) = cos 45º.cos 30º - sin 45º. sin

Слайд 9Proof-2 cos(a-b) = cos a . cos b + sin

a . sin b
Since cos(a+b) = cosa . cosb –

sina . sinb is valid far all real numbers a and b,
then cos(a+(-b)) = cosa . cos(-b) – sina . sin(-b)
cos(a-b) = cosa . cosb + sina . sinb

BACK

Example-2

Proof-2  cos(a-b) = cos a . cos b + sin a . sin bSince cos(a+b) =

Слайд 10Example-2:
Solution-2
cos 15o = ?

Example-2:Solution-2cos 15o = ?

Слайд 11Solution-2:
cos 15º = cos ( 45º - 30º )
=

cos 45º.cos 30º + sin 45º. sin 30º
BACK

Solution-2:cos 15º = cos ( 45º - 30º ) = cos 45º.cos 30º + sin 45º. sin

Слайд 12Proof-3 sin(a+b) = sin a . cos b + cos

a . sin b
We can write sine in terms of

cosine by using reduction formulas. Hence,

sin(a+b) = sin a . cos b + cos a. sin b

BACK

Example-3

Proof-3  sin(a+b) = sin a . cos b + cos a . sin bWe can write

Слайд 13Example-3:
Solution-3
sin 105o = ?

Example-3:Solution-3sin 105o = ?

Слайд 14Solution-3:
sin 105º = cos ( 60º + 45º )
=

sin 60º.cos 45º + cos 60º. sin 45º
BACK

Solution-3:sin 105º = cos ( 60º + 45º ) = sin 60º.cos 45º + cos 60º. sin

Слайд 15Proof-4 sin(a+b) = sin a . cos b - cos

a . sin b
Since the equality sin(a+b) = sin a

. cos b + cos a. sin b is valid for all real numbers a and b, by writing –b instead of b, we get


sin(a+(-b)) = sin a . cos(-b) + cos a. sin(-b) then

sin(a+b) = sin a . cos b - cos a . sin b

BACK

Example-4

Proof-4  sin(a+b) = sin a . cos b - cos a . sin bSince the equality

Слайд 16Example-4:
Solution-4
sin 15o = ?

Example-4:Solution-4sin 15o = ?

Слайд 17Solution-4:
sin 15º = cos ( 60º - 45º )
=

sin 60º.cos 45º - cos 60º. sin 45º
BACK

Solution-4:sin 15º = cos ( 60º - 45º ) = sin 60º.cos 45º - cos 60º. sin

Слайд 18Theorem 1.5
1. If a, b and a+b real numbers different

from π/2+kπ, k∈Z, then
2. If a, b and a-b real

numbers different from π/2+kπ, k∈Z, then


Proof-5

Example-5


Proof-6

Example-Example-6

Theorem 1.6

BACK

Theorem 1.51. If a, b and a+b real numbers different from π/2+kπ, k∈Z, then2. If a, b

Слайд 19Proof-5
BACK
Example-5

Proof-5BACKExample-5

Слайд 20Example-5:
Solution-5
Let α and β be two acute angles. If sin α=3/5

and cos β= 5/13, then find tan(α+β).

Example-5:Solution-5Let α and β be two acute angles. If sin α=3/5 and cos β= 5/13, then find

Слайд 21Solution-5:
BACK

Solution-5:BACK

Слайд 22Proof-6
2. If we write –b instead of b in

the previous equality then,
BACK
Example-6

Proof-62. If we write  –b instead of b in the previous equality then,BACKExample-6

Слайд 23Example-6:
Solution-6
In triangle ABC, if m(CAD)=θ, then find tan θ.

Example-6:Solution-6In triangle ABC, if m(CAD)=θ, then find tan θ.

Слайд 24Solution-6:
BACK
tan θ = tan (a – b)

Solution-6:BACKtan θ = tan (a – b)

Слайд 25Theorem 1.6
1. If a, b and a+b real numbers different

from kπ, k∈Z, then
2. If a, b and a-b real

numbers different from kπ, k∈Z, then

Theorem 1.7

BACK

Theorem 1.61. If a, b and a+b real numbers different from kπ, k∈Z, then2. If a, b

Слайд 26Proof-7
BACK
Example-7

Proof-7BACKExample-7

Слайд 27Example-7:
Solution-7
In the adjoining figure ⏐AB⏐= 4, ⏐BC⏐= 3, ⏐AD⏐= 12

and m(ABC)=90º, m(CAD)=90º, m(CED)=90º. Find cot θ, if m(DCE) =

θ .
Example-7:Solution-7In the adjoining figure ⏐AB⏐= 4, ⏐BC⏐= 3, ⏐AD⏐= 12 and m(ABC)=90º, m(CAD)=90º, m(CED)=90º. Find cot θ,

Слайд 28Solution-7:
BACK
⏐AC⏐ = 5 and ⏐CD⏐ = 13.
Put m(ACB) =

a and m(ACD) = b then,
θ = 180° -

(a + b)

cot θ = cot (180° - (a + b))

= - cot (a + b)

Solution-7:BACK⏐AC⏐ = 5 and ⏐CD⏐ = 13. Put m(ACB) = a and m(ACD) = b then, θ

Слайд 29Proof-8
2. If we write –b instead of b in

the previous equality then,
BACK
Example-8

Proof-82. If we write  –b instead of b in the previous equality then,BACKExample-8

Слайд 30Example-8:
Solution-8
Adjoining figure consists of three equivalent squares. Find cot θ,

if m(CAE)= θ

Example-8:Solution-8Adjoining figure consists of three equivalent squares. Find cot θ, if m(CAE)= θ

Слайд 31Solution-8:
BACK
Let x be the lenght of the sides of each

equivalent square.
If m(BAC) = 45º, and m(BAE) = α then,


θ = α - 45°

cot θ = cot (α - 45°)

Solution-8:BACKLet x be the lenght of the sides of each equivalent square.If m(BAC) = 45º, and m(BAE)

Слайд 32Theorem 1.7
1. If a, b and a+b real numbers different

from kπ, k∈Z, then
2. If a, b and a-b real

numbers different from kπ, k∈Z, then

BACK

Theorem 1.71. If a, b and a+b real numbers different from kπ, k∈Z, then2. If a, b

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика