Разделы презентаций


Возрастание и убывание функций

Познакомимся на примере с возрастанием и убыванием функции. На рисунке ниже изображен график функции, определенной на отрезке [-1;10]. Эта функция возрастает на отрезках [-1;3] и [4;5], и убывает на отрезках [3;4]

Слайды и текст этой презентации

Слайд 1Возрастание и убывание функций

Возрастание и убывание функций

Слайд 2Познакомимся на примере с возрастанием и убыванием функции. На рисунке

ниже изображен график функции, определенной на отрезке [-1;10]. Эта функция

возрастает на отрезках [-1;3] и [4;5], и убывает на отрезках [3;4] и [5,10].








Рассмотрим еще один пример. Очевидно, что функция y=x2 убывает на промежутке (-∞; 0] и возрастает на промежутке [0;∞). Видно, что график этой функции при изменении x от -∞ до 0 сначала опускается до нуля, а затем поднимается до бесконечности. Определение. Функция f возрастает на множестве P, если для любых x1 и x2 из множества P, таких, что x2>x1, выполнено неравенство f(x2) > f(x1). Определение. Функция f убывает на множестве P, если для любых x1 и x2 из множества P, таких, что x2>x1, выполнено неравенство f(x2) < f(x1). Иначе говоря, функция f называется возрастающей на множестве P, если большему значению аргумента из этого множества соответствует большее значение функции. Функция f называется убывающей на множестве P, если большему значению аргумента соответствует меньшее значение функции.
Познакомимся на примере с возрастанием и убыванием функции. На рисунке ниже изображен график функции, определенной на отрезке

Слайд 3Возрастание и убывание четных функций
Для четных функций задача нахождения промежутков

возрастания и убывания сильно упрощается. Достаточно всего лишь найти промежутки

возрастания и убывания при x≥0 (см. рисунок внизу). Пусть, например, функция f четна и возрастает на промежутке [a;b], где b>a≥0. Докажем, что эта функция убывает на промежутке [-b; -a]. Действительно, пусть -a≥x2>x1≥-b. Тогда f(-x2)=f(x2), f(-x1)=f(x1), причем a≤-x2<-x1≤b, и, поскольку f возрастает на [a;b], имеем f(-x1)>f(-x2), то есть f(x1)>f(x2).
Возрастание и убывание четных функцийДля четных функций задача нахождения промежутков возрастания и убывания сильно упрощается. Достаточно всего

Слайд 4Возрастание и убывание функции синус
Докажем, что синус возрастает на промеждутках

[-π/2+2πn ; π/2+2πn], n - целое. В силу периодичности функции

синуса доказательство достаточно провести для отрезка [-π/2 ; π/2]. Пусть x2 > x1. Применим формулу разности синусов и найдем: Из неравенства -π/2 ≤ x1 < x2 ≤ π/2 следует, что и , поэтому и , следовательно и . Это доказывает, что на указанных промежутках синус возрастает. Аналогичным образом легко доказать, что промежутки [π/2+2πn ; 3π/2+2πn], n - целое, являются промежутками убывания функции синуса. Полученный результат можно легко проиллюстрировать с помощью рисунка единичной окружности (см. рисунок ниже). Если -π/2 ≤ t1 < t2 ≤ π/2, то точка Pt2 имеет ординату большую, чем точка Pt1. Если же π/2 ≤ t1 < t2 ≤ 3π/2, то ордината точки Pt2 меньше, чем ордината точки Pt1.
Возрастание и убывание функции синусДокажем, что синус возрастает на промеждутках [-π/2+2πn ; π/2+2πn], n - целое. В

Слайд 5Возрастание и убывание функции косинус
Промежутками возрастания косинуса

являются отрезки [-π+2πn ; 2πn], n - целое. Промежутками убывания

косинуса являются отрезки [2πn ; π + 2πn], n - целое. Доказательство этих утверждений можно провести аналогично доказательству для синуса. Однако, проще воспользоваться формулой приведения cos(x) = sin(x + π/2), из которой сразу следует, что промежутками возрастания косинуса являются промежутки возрастания синуса, сдвинутые на π/2 влево. Аналогичное утверждение можно сделать и для промежутков убывания.
Возрастание и убывание функции косинус   Промежутками возрастания косинуса являются отрезки [-π+2πn ; 2πn], n -

Слайд 6Упражнение №82а

Упражнение №82а

Слайд 7Упражнение №82б

Упражнение №82б

Слайд 8Упражнение №82в

Упражнение №82в

Слайд 9Упражнение №82г

Упражнение №82г

Слайд 10Упражнение №83а

Упражнение №83а

Слайд 11Упражнение №83в

Упражнение №83в

Слайд 12
Упражнение №77,78

Упражнение №77,78

Слайд 13Автор: Сабитова Файруза Рифовна
учитель математики
1 квалификационной категории

Автор: Сабитова Файруза Рифовнаучитель математики 1 квалификационной категории

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика