Разделы презентаций


Задачи на построение сечений

Содержание

Для решения многих геометрических задач, связанных с тетраэдром и параллелепипедом, полезно уметь строить на рисунке их сечения различными плоскостями. Что понимается под сечением тетраэдра или параллелепипеда? Назовём секущей плоскостью тетраэдра (параллелепипеда)

Слайды и текст этой презентации

Слайд 1Задачи на построение сечений
Выполнили: Салина Анна

Стебнева Кристина

ученицы 10Б класса
ГБОУ СОШ
«Образовательный центр
п.г.т. Рощинский
Руководитель: учитель высшей квалификационной категории Пятовская Людмила Петровна

Задачи на построение сеченийВыполнили: Салина Анна           Стебнева

Слайд 2Для решения многих геометрических задач, связанных с тетраэдром и параллелепипедом,

полезно уметь строить на рисунке их сечения различными плоскостями. Что

понимается под сечением тетраэдра или параллелепипеда? Назовём секущей плоскостью тетраэдра (параллелепипеда) любую плоскость, по обе стороны от которой имеются точки данного тетраэдра ( параллелепипеда). Секущая плоскость пересекает грани тетраэдра
(параллелепипеда) по отрезкам. Многоугольник, сторонами которого являются эти отрезки, называют сечением тетраэдра (параллелепипеда) .

Для решения многих геометрических задач, связанных с тетраэдром и параллелепипедом, полезно уметь строить на рисунке их сечения

Слайд 3Так как тетраэдр имеет четыре грани, то его сечениями могут

быть только треугольники и четырёхугольники.

Так как тетраэдр имеет четыре грани, то его сечениями могут быть только треугольники и четырёхугольники.

Слайд 4Параллелепипед имеет шесть граней. Его сечениями могут быть треугольники, четырёхугольники,

пятиугольники и шестиугольники

Параллелепипед имеет шесть граней. Его сечениями могут быть треугольники, четырёхугольники, пятиугольники и шестиугольники

Слайд 5При построении сечений параллелепипеда следует учитывать тот факт, что если

секущая плоскость пересекает две противоположные грани по каким-то отрезкам, то

эти отрезки параллельны
( по свойству параллельных плоскостей что если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны)

При построении сечений параллелепипеда следует учитывать тот факт, что если секущая плоскость пересекает две противоположные грани по

Слайд 6На рисунке секущая плоскость пересекает две противоположные стороны грани

( правую и левую) по отрезкам AB и CD,

а две другие грани( переднюю и заднюю) по отрезкам AE и BC, поэтому AB II CD и
AE II BC.

На рисунке секущая плоскость пересекает две противоположные стороны грани  ( правую и левую) по отрезкам AB

Слайд 7По этой же причине на данном рисунке
AB II

ED, AF II CD, BC II EF

По этой же причине на данном рисунке  AB II ED, AF II CD, BC II EF

Слайд 8 Для построения сечения достаточно построить точки пересечения секущей плоскости

с ребрами тетраэдра (параллелепипеда), после чего останется провести отрезки, соединяющие

каждые две построенные точки, лежащие в одной и той же грани.
Для построения сечения достаточно построить точки пересечения секущей плоскости с ребрами тетраэдра (параллелепипеда), после чего останется

Слайд 9Задача 1.  На ребрах АВ,BD ,CD тетраэдра ABCD отмечены точки M

, N, P. Построить сечение тетраэдра плоскостью MNP.

Задача 1.  На ребрах АВ,BD ,CD тетраэдра ABCD отмечены точки M , N, P. Построить сечение тетраэдра

Слайд 10Решение. 1.Построим прямую, по которой плоскость MNP пересекается с плоскостью грани

ABC. Точка M является общей точкой этих плоскостей.

2. Продолжим отрезки NP , BC до их пересечения в точке E, которая и будет второй общей точкой плоскостей MNP и ABC. Следовательно, эти плоскости пересекаются по прямой ME. Прямая ME пересекает ребро AC в некоторой точке Q. Четырехугольник MNPQ-искомое сечениие

E

Q

Решение. 1.Построим прямую, по которой плоскость MNP пересекается с плоскостью грани ABC. Точка M является общей точкой

Слайд 11Если прямые NP и BC параллельны, то прямая NP параллельна

грани ABC, поэтому плоскость MNP пересекает эту грань по прямой

ME, параллельной прямой NP. Точка Q, как и в первом случае, есть точка пересечения ребра AC с прямой ME
Если прямые NP и BC параллельны, то прямая NP параллельна грани ABC, поэтому плоскость MNP пересекает эту

Слайд 12Задача 2.  Точка M лежит на боковой грани ABD тетраэдра DABC.

Построить сечение тетраэдра плоскостью, проходящей через точку М параллельно основанию

ABC.
Задача 2.  Точка M лежит на боковой грани ABD тетраэдра DABC. Построить сечение тетраэдра плоскостью, проходящей через

Слайд 13Решение.  Так как секущая плоскость параллельна плоскости АВС, то она параллельна

прямым АВ, ВС и СА. Следовательно, секущая плоскость пересекает боковые

грани тетраэдра по прямым, параллельным сторонам треугольника АВС.
Проведем чрез точку М прямую, параллельную отрезку АВ, и обозначим буквами P и Q точки пересечения этой прямой с боковыми ребрами DA и DB. Затем через точку Р проведем прямую, параллельную отрезку АС, и обозначим буквой R точку пересечения этой прямой с ребром DC. Треугольник PQR- искомое сечение.

Q

R

P

Решение.  Так как секущая плоскость параллельна плоскости АВС, то она параллельна прямым АВ, ВС и СА. Следовательно,

Слайд 14Задача 3 . На ребрах параллелепипеда даны три точки А, В

и С. Построить сечение параллелепипеда плоскостью ABC.

Задача 3 . На ребрах параллелепипеда даны три точки А, В и С. Построить сечение параллелепипеда плоскостью

Слайд 15Решение. Построение искомого сечения зависит от того, на каких ребрах параллелепипеда

лежат точки А,В и С. Когда эти точки лежат на

ребрах, выходящих из одной вершины, нужно провести отрезки АВ,ВС и АС, и получится искомое сечение- треугольник АВС.
Решение. Построение искомого сечения зависит от того, на каких ребрах параллелепипеда лежат точки А,В и С. Когда

Слайд 16Если три данные точки расположены иначе, то сначала нужно провести

отрезки АВ и ВС, а затем через точку А провести

прямую АЕ, а через точку С-прямую СД, параллельную АВ. Пересечения этих прямых с ребрами нижней грани дают точки E и D. Остается провести отрезок ED, и искомое сечение- пятиугольник ABCDE- построено.

A

B

C

E

D

Если три данные точки расположены иначе, то сначала нужно провести отрезки АВ и ВС, а затем через

Слайд 17


Спасибо за внимание!

Спасибо за внимание!

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика