Разделы презентаций


1 JINR: Current activities and Prospects Nuclear Engineering, Femto - and

Содержание

The agreement on the establishment of JINR was signed on 26 March 1956 in MoscowJINR – a Centre of Broad International Partnership on the Russian Land- 18 Member States- 6 Associated

Слайды и текст этой презентации

Слайд 1JINR: Current activities and Prospects
Nuclear Engineering, Femto- and Nanotechnologies».
Conference

is devoted to the

60th anniversary of Joint Institute for

Nuclear Research, Dubna

June 29 – July 3, 2015, Peterhof, Saint-Petersburg
JINR: Current activities and Prospects Nuclear Engineering, Femto- and Nanotechnologies». Conference is devoted to the 60th anniversary

Слайд 2The agreement on the establishment of JINR was signed on

26 March 1956 in Moscow
JINR – a Centre of Broad

International Partnership on the Russian Land

- 18 Member States
- 6 Associated Members States
about 700 research partners in
60 countries
- staff members ~ 5500

The agreement on the establishment of JINR was signed on 26 March 1956 in MoscowJINR – a

Слайд 3Special Economic Zone “Dubna”
Public-Private-Partnership
UC, DIAS-TH
International Univ. “Dubna”
Education
programme
Innovative
activities
JINR’s Science Policy
7-Year

Programme: ‘2003 – 2009’ (complete and successful realization)

‘2010 – 2016’ (final draft approved by the Scientific Council, Sept. 2009 and CPP, Nov. 2009)
Road Map (2006-2017)

High Energy Physics
Nuclear Physics
Condensed Matter Physics

Basic Scientific Directions

Fundamental
Science

I.

Special Economic Zone “Dubna”Public-Private-Partnership UC, DIAS-THInternational Univ. “Dubna”EducationprogrammeInnovativeactivitiesJINR’s Science Policy7-Year Programme: ‘2003 – 2009’ (complete and successful

Слайд 4Collider
C = 251 m
Bldng 205
NICA layout
JINR’s Large-Scale Basic Facilities

ColliderC = 251 mBldng 205 NICA layoutJINR’s Large-Scale Basic Facilities

Слайд 5JINR’s Large-Scale Basic Facilities
U400 isochronous cyclotron
U400MR isochronous cyclotron


DRIBs (I,II,III) –
Dubna Radioactive
Ion Beams
For the last

decade JINR has become one of the leading scientific centres in the world in low energy heavy-ion physics.

U400 and U400M isochronous cyclotrons are combined into the accelerator complex – project DRIBs which deals with the production of beams of exotic light neutron-deficient and neutron-rich nuclei in reactions with light ions.

Number of observed decay chains
Element 118 3
Element 116 26
Element 115 4
Element 114 43
Element 113 2
Element 112 8

JINR’s Large-Scale Basic FacilitiesU400 isochronous cyclotron U400MR isochronous cyclotron DRIBs (I,II,III) – Dubna Radioactive Ion Beams For

Слайд 6NEW
EXPERIMENTAL HALL
DRIBs-III (2016)
Modernization of existing accelerators (U400М &

U400)
Creation of the new experimental hall (≈ 2600м2)
Development

and creation of next generation set-ups
Creation of high current heavy ion accelerator DC200
(A≤ 100, E ≤ 10 MeV ·A, I≥10 pµA)

JINR’s Large-Scale Basic Facilities

DC200: MAIN PARAMETERS

NEW EXPERIMENTAL HALLDRIBs-III (2016) Modernization of existing accelerators (U400М & U400) Creation of the new experimental hall

Слайд 7JINR’s Large-Scale Basic Facilities
The IBR-2M pulsed reactor of periodic action

is included in the

20-year European strategic programme of neutron scattering research.

Parameters

Fundamental and applied research in condensed matter physics and related fields –– biology, medicine, material sciences, geophysics, engineer diagnostics — aimed at probing the structure and properties of nanosystems, new materials, and biological objects, and at developing new electronic, bio- and information nanotechnologies.

JINR’s Large-Scale Basic FacilitiesThe IBR-2M pulsed reactor of periodic action is included in the

Слайд 8NEMO 3 Experiment (at present)
bb(0n) : 2n  2p+2e-
FUTURE:

from NEMO 3 to Super NEMO
2011 – First Module on-site

of NEMO 3
2012 – 2016 – Installation and data taking at Super Nemo

Expected Limits: T1/2(bb0n) > (1-2) x 1026 y, < 0.06 - 0.10 eV

Present Limits (90% CL) :
T1/2(0nbb) > 5.8 x 1023 y,
< 0.8 – 1.3 eV

Neutrino and Rare Phenomena Physics

From NOMAD to OPERA

OPERA: 2008 – 2009: start of data taking in full configuration
2010 – 2016: further data taking and analysis

NEMO 3 Experiment (at present)bb(0n) :  2n  2p+2e-FUTURE: from NEMO 3 to Super NEMO2011 –

Слайд 9Network and telecommunication
two important projects completed


1. JINR - Moscow 20Gbps telecommunication channel was put

into operation.
2. Increase of the JINR Central Information and Computing Complex performance up to 2400 kSI2K and the disk storage capacity up to 500 TB.

At present, JINR site is one of the 10 best sites of the worldwide Grid infrastructure (WLCG).

Network and telecommunication  two important projects completed   1.  JINR - Moscow 20Gbps telecommunication

Слайд 10EDUCATIONAL PROGRAMME
More than 300 students and postgraduates from Member States

are trained at the UC
A vitally important task is attracting

of young people from
all the Member States to science

JINR is a school of excellence for the Member States!

MSU

MIPT

MEPI

Chairs:

MIREA

others

JINR UNIVERSITY CENTRE

“Dubna” International University

The UC offers graduate programmes in the fields of:
Elementary Particle Physics
Nuclear Physics
Theoretical Physics
Condensed Matter Physics
Technical Physics
Radiobiology

DIAS - TH

Dubna International
Advanced School
on Theoretical Physics

EDUCATIONAL PROGRAMMEMore than 300 students and postgraduates from Member States are trained at the UCA vitally important

Слайд 11Havana
Warsaw
Ulaanbaatar
Prague
Cracow
Bratislava
Dubna
Astana
Microtron
Cyclotron
Tashkent
Sofia
Accelerators for the JINR Member States
International nature of Dubna

HavanaWarsawUlaanbaatarPragueCracowBratislavaDubnaAstanaMicrotronCyclotronTashkentSofiaAccelerators for the JINR Member States International nature of Dubna SEZ

Слайд 12II Advanced courses for CIS countries
“Synchrotron and Neutron Studies of Nanosystems”

-200928 June – 13 July 2009
Organizing - informative forum
“Establishment

of the International Innovation Nanotechnology Centre in Dubna”.
1 – 2 July 2009

Large International Nanotechnology forums at JINR

II Advanced courses for CIS countries“Synchrotron and Neutron Studies of Nanosystems” -200928 June – 13 July 2009Organizing

Слайд 13NUCLEAR TRACK MEMBRANES
At the Joint Institute for Nuclear Research an advanced

technology has been developed to produce nuclear membranes by using

unique multicharged ion cyclotrons.
On the basis of this technology the nuclear membranes can be produced from various polymeric films.  

Scheme of nuclear
membrane manufacture

NUCLEAR TRACK MEMBRANESAt the Joint Institute for Nuclear Research  an advanced technology has been  developed

Слайд 14Различные формы нано- и микропор в трековой фольге
Для сравнения –

человеческий волос и микропоры трековой мембраны


















а)

b)

c)

d)

e)

f)

Nanostructures of various modifications

Различные формы нано- и микропор в трековой фольгеДля сравнения – человеческий волос и микропоры трековой мембраны

Слайд 15Beams layout for hadron therapy at the JINR Phasotron
Proton therapy
γ-therapy
Medico-technical

complex of hadron therapy
Radiation Medicine

Beams layout  for hadron therapy at the JINR Phasotron Proton therapyγ-therapyMedico-technical complex of hadron therapyRadiation Medicine

Слайд 16Three Pillars of JINR:



Great experience and world-wide
recognized traditions

of scientific
schools.


Large and unique park of
basic facilities for

fundamental and
applied research.



Status of an international
intergovernmental organization.
Three Pillars of JINR: Great experience and world-wide recognized traditions of scientific schools.Large and unique park of

Слайд 17Welcome to JINR (Dubna)
wwwnew.jinr.ru

Welcome to JINR (Dubna)wwwnew.jinr.ru

Слайд 18ПЕНИОНЖКЕВИЧ Ю.Э.
Flerov Laboratory Nuclear Reaction JINR, Dubna
Exotism of Nuclei

ПЕНИОНЖКЕВИЧ Ю.Э.Flerov Laboratory Nuclear Reaction JINR, DubnaExotism of Nuclei

Слайд 19

Exotism of Nuclei

Introduction
Nuclear matter exotism

Hot nuclei
Super deformed

nuclei
Super dense nuclei
Neutron and proton nuclei
Super heavy nuclei

Borders of nuclear stability

Super neutron – rich nuclei of light elements (10He)
Nuclei close to N=20, 28 (28O, 40Mg)
Super heavy nuclei

Beams of accelerated exotic nuclei



Exotism of Nuclei IntroductionNuclear matter

Слайд 20Nuclei Matter
neutron rich nuclei
Z
proton rich nuclei
saturation density
Neutron Matter
N
Neutron Star
liquid
normal nuclear

matter
N-Z A
gas
T
hot fluid
High temperature matter
mixed phase
Isospin
density
Exotic Nuclei

Nuclei Matterneutron rich nucleiZproton rich nucleisaturation densityNeutron MatterNNeutron Starliquidnormal nuclear matterN-Z AgasThot fluidHigh temperature mattermixed phaseIsospindensityExotic Nuclei

Слайд 21a giant
deformation
axes
up to 3:1
After it has been shown that

a nucleus can endure
and finally survive….

a giant deformationaxesup to 3:1After it has been shown that a nucleus can endureand finally survive….

Слайд 22 Test of the
Standard Model
CKM-Matrix
Fundamental Symmetries

and Interactions
Sp=0
Sn=0
Physics with Exotic Nuclei
New Decay Modes
2

p and n radioactivity
Test of theStandard Model  CKM-MatrixFundamental Symmetries    and InteractionsSp=0Sn=0Physics with Exotic NucleiNew

Слайд 23F.Negoita, D.Guillemaud-Mueller, Yu.Penionzhkevich
Phys.Rev C,v.54,n.4,1996

F.Negoita, D.Guillemaud-Mueller, Yu.PenionzhkevichPhys.Rev C,v.54,n.4,1996

Слайд 24Exotic Nuclei
Exotic Nuclei
Stable Nuclei
↑Z
→ N

Exotic NucleiExotic NucleiStable Nuclei↑Z→ N

Слайд 25Lightest neutron- rich nuclei
10Li
Structure =core+xn
… driplines and beyond experimentally accessible,

extreme test of models (shell model, shell model in continuum,

“ab initio”, cluster, etc)

9He

10He

Borromean nuclei
core+n+n – bound core+n n+n - unbound

Lightest neutron- rich nuclei10LiStructure =core+xn   … driplines and beyond experimentally accessible, extreme test of models

Слайд 26 MISSING-MASS METHOD

(binary reactions)

A (a,b)B


MA+Ma= Mb+MB+Q/c2
Ра=Рь+Pв; Pa=O

Pb=PAMbcosΘ/(MA+Ma)+{2MbMB[EAMa/ (MA+Ma)+Q-E*]/
/(Mb+MB) -[PAMbsinΘ/(MA+Ma)]2}1/2

Mb Pb are measured → Q,E* are calculated →MB is obtained

MISSING-MASS METHOD         (binary

Слайд 27 Tetraneutron Fragmentation 14Ве (40АМeV)


Tetraneutron Fragmentation 14Ве (40АМeV)

Слайд 28Known β-emitters
Predicted β-2n-emitters

Known β-emittersPredicted β-2n-emitters

Слайд 29Configuration “DUBNA-ORSAY”
Transition geometry
90 counters 3He in not optimised geometry with

middle
Еfficiency of neutron registration.
2 germanium detectors (maximum efficiency

of gamma registration)
1 beta detector

NEUTRON DETECTOR “TETRA” FOR TETRANEUTRON SEARCH

Configuration “DUBNA-ORSAY”Transition geometry90 counters 3He in not optimised geometry with middle Еfficiency of neutron registration. 2 germanium

Слайд 304H



ER = 2.6  0.5 МэВ
Penionzhkevich et

all

ER = 3.5(5) МэВ
(ER  5.3 МэВ)

6Н  3Н+n+n+n , Г = 1.3  0.5 МэВ
Ter-Akopyan et all

4H            6Н ER = 2.6 

Слайд 319He
H.Bohlen et all.

9HeH.Bohlen et all.

Слайд 3210Be(14C,14O)10He; Q = -41.2 МэВ
10He

10Be(14C,14O)10He; Q = -41.2 МэВ10He

Слайд 33Summary on He-isotopes
R.Kalpakchieva et all.

Summary on He-isotopesR.Kalpakchieva et all.

Слайд 34Shells in the light nuclei
Light very neutron-rich

nuclei properties

Shells in the light nucleiLight very neutron-rich     nuclei properties

Слайд 35Exploring of the Neutron-Drip Line
Theoretical predictions:
Mass formula (P.Moller et al

At. Data
Nucl. Tables 59 185 1995)
Mass

Formula Koura et al RIKEN-AF-NP-394


Predictions disagree
with each other

The variation of the shell gap and deformation as a function of N and Z could be a major challenger. A particular feature in this region is the progressive development of deformation in spite of the expected effect of spherical stability due to magicity of N=20 and N=28 shells.

Exploring of the Neutron-Drip LineTheoretical predictions:Mass formula (P.Moller et al At. Data Nucl. Tables 59 185 1995)

Слайд 36Theoretical predictions

Theoretical predictions

Слайд 37EXPERIMENTAL EVIDENCES of PARTICLE STABILITY of 31F, 34Ne and 37Na
S.Lukyanov

et al Phys.(London) G28, L41 (2002)
M.Notani et al
Phys.Lett.

542B, 49 (2002)

Experimentally established:
The last particle bound Nitrogen isotope in 23N (N=16), Oxygen isotope is 24O( N=16)
The neutron drip line extends beyond N=20 and reaches N=24 for 34Ne and even N=26 for 37 Na isotopes.

EXPERIMENTAL EVIDENCES of PARTICLE STABILITY of 31F, 34Ne and 37NaS.Lukyanov et al  Phys.(London) G28, L41 (2002)M.Notani

Слайд 38Gamma-ray energy of the first 2+ level for even-even nuclei
The

strength of N=20 and N=28 shells is variable in the

region from carbon up to neon.

Appearance of new
magic numberN=16?

A particular feature in this region is the progressive development of
prolate deformation in spite of the expected effect of spherical stability due to the magicity of the neutron numbers N=20 and 28.
It was argued that the deformation may lead to enhanced binding energies in some of yet undiscovered neutron-rich nuclei.

Gamma-ray energy of the first 2+ level for even-even nucleiThe strength of N=20 and N=28 shells is

Слайд 39Potential energy as a function of the deformation

for magnesium isotopes

Potential energy as a function of the deformation

Слайд 40Conclusions:
Drip line is located for O-Na region
24O , 31F, 34Ne

37Na and 40Mg are defined the cliff of the neutron

drip line
Experimental evidence of progressive development of deformation in
spite of the expected effect of spherical stability due to magicity of N=20 and N=28 shells
New magic numbers (N=16 and N=26?) are appeared far from stability instead of N=20 and N=28
There are difficulties in the theoretical predictions of the neutron-drip line
Qualitative difference for Neutron Drip line Nuclei:


Conclusions:Drip line is located for O-Na region24O , 31F, 34Ne 37Na and 40Mg are defined the cliff

Слайд 41Shell model modification


Harmonic Oscillator

Shell model

around the Vanishing of the magic numbers
valley of stability far from stability ?

Shell closures far from stability :
N=20 : "Island of inversion" for neutron-rich nuclei (ex. 32Mg)
N=28 : Short Lifetime of the 44S (GANIL), (β2 (MSU)
Deformation, Modification of the "standard" shell model ?...
Shell  model  modification   Harmonic Oscillator

Слайд 42 FUSION CROSS SECTIONS FOR THE

4,6,8He+197Au

FUSION CROSS SECTIONS FOR THE  4,6,8He+197Au

Слайд 43Fusion of light neutron rich nuclei produced in the r-

process
may significantly change the nucleosynthesis scenario

Fusion of light neutron rich nuclei produced in the r- processmay significantly change the nucleosynthesis scenario

Слайд 44Formation of alpha-condensation
r0 = 1.1 – 1.2 fm
r0 ~ 2.0

fm
Normal nucleus
consisting of
fermions
Bose
condensate

Formation of alpha-condensationr0 = 1.1 – 1.2 fmr0 ~ 2.0 fmNormal nucleusconsisting of fermionsBosecondensate

Слайд 45Possible candidates in light nuclei
States close to α-decay thresholds
7.65 MeV,

0+ level of 12C
0.0 0+
4.44 2+
7.65 0+
9.64 3-
7.37
8Be

+ α

First experimental task:
Get evidence of abnormally large dimensions of 7.65 MeV level
The state is unstable

Not reproduced by shell model

Образование элементов тяжелее
гелия происходит путем резонансного слияния трех альфа-частиц.
Увеличение ядерных сил на несколько процентов опустит уровень под порог.
Случайность?
Антропный принцип?

Схема уровней
ядра 12С

Possible candidates in light nucleiStates close to α-decay thresholds7.65 MeV, 0+ level of 12C0.0  0+4.44 2+

Слайд 47 Perspective region: A ~ 100,

Z = N

112Ba (Tretyakova & Ogloblin)

112Ba  nα Q > 0 for n ~ 7
112Ba  3α + 100Sn (double magic core),
Q ~ 13 – 14 MeV
 12C: heavier clustering

Proposal: 112Ba beam and
total cross-section measurements




See rapport A.Ogloblin

Perspective region: A ~ 100, Z = N

Слайд 48Heaviest Nuclei

Heaviest Nuclei

Слайд 51287Fl
200
210
130
Island of
stability of SHE
291Lv
β-stability line
277Cn
2012
Yu. Oganessian 113-th Session of

the Scientific Council of JINR, Feb.21, 2013, Dubna

287Fl200210130Island of stability of SHE291Lvβ-stability line277Cn2012Yu. Oganessian 113-th Session of the Scientific Council of JINR, Feb.21, 2013,

Слайд 52108 лет
105 лет
1 год
1 день
Экспериментальный
предел при поисках
в природе

108 лет105 лет1 год1 деньЭкспериментальныйпредел при поискахв природе

Слайд 53Alternative methods for synthesis of SHE
No chances for low-intensive beams

of accelerated fission fragments like 132Sn
More intensive beam is needed
160Gd

+ 186W is a good
testing reaction
Alternative methods for synthesis of SHENo chances for low-intensive beams of accelerated fission fragments like 132SnMore intensive

Слайд 54Reactions of synthesis SHE
Neutron
capture
Radioactive
nuclear
beams

Reactions of synthesis SHENeutron captureRadioactive nuclear beams

Слайд 55Facilities new and upgrades 2010-2025
Roadmap
ISOL
In fligth
2012
2016
2018
2013
2014
2015
2017
RIBF
fragmentation
fusion - DIC
post-acc.
repos
SPES+ALPI
commissioning

construction
commissioning
construction
2019
Preparatory phase
SITE?
2020
2021
2022
PHASE1
post acc
CIME
PHASE2
150 AMeV ETUDE
commissioning
NFS
AGATA au GANIL
SPES
Dubna


DRIBs3
ISOL
30A/MeV

Dubna
DRIBs1,2
ISOL
‹10A/MeV

Facilities new and upgrades 2010-2025Roadmap  ISOLIn fligth2012201620182013201420152017RIBFfragmentationfusion - DICpost-acc.reposSPES+ALPIcommissioning   constructioncommissioningconstruction2019Preparatory phaseSITE?202020212022PHASE1post acc CIMEPHASE2150 AMeV

Слайд 56DIRECT
U400M cyclotron
Low energy
beam line (ISOL)
7Li,11B,18O

@ 33 AMeV
6Li,15N

@ 46 AMeV
20Ne,32S @ 52 AMeV
… 78Kr @ 41 AMeV

Dubna
Radioactive
Ion
Beams
DRIBs-I → DRIBs-III ↔
2004 2011-2016 > 2018?

RIBs: now
6He@10 AMeV
~5x108 pps

ISOL

Acculinna
1996

Acculinna-2
2015

Production target and ECR source

Combas

RIBs Facilities
@Flerov Lab of Nuclear Reactions, JINR

U400 cyclotron

DIRECTU400M cyclotronLow energybeam line (ISOL)     7Li,11B,18O @ 33 AMeV

Слайд 57Low Energy RI-beams
from U-400M Cyclotron
3 experiments
7 setups
Upgraded U-400R
DC-280 - new
accelerator
DRIBs3

Low Energy RI-beamsfrom U-400M Cyclotron3 experiments7 setupsUpgraded U-400RDC-280 - newacceleratorDRIBs3

Слайд 58Thank you for your attention!

Thank you for your attention!

Слайд 59International Symposium on Exotic Nuclei ( EXON 2016 ) Kazan, Russia,

6- 10 September, 2016
The Topics to be discussed are following:

Rare processes and decays
Methods of production of light exotic
nuclei and study of their properties
Radioactive beams. Production and
research programmes
Experimental set-ups and future
projects
Superheavy elements. Synthesis
and properties

Organized jointly by JINR, GSI, RIKEN, GANIL, NSCL

It is the eight one of a series and is dedicated to the
properties of nuclei in extreme states.

International Symposium on Exotic Nuclei  ( EXON 2016 ) Kazan, Russia, 6- 10 September, 2016The Topics

Слайд 60Welcome to Kazan (EXON 2016)

Welcome to Kazan (EXON 2016)

Слайд 61Exotic nuclear shapes
quadrupole
octupole
hexadecapole

the largest deformations at the highest spins

fusion-evaporation with intense n-rich RIB
high-spin spectroscopy
-ray spectroscopy

at S3
in-flight production of exotic nuclei
shape coexistence (at low spin)
low-energy Coulomb excitation
EXOGAM, EUROBALL, AGATA + VASILISA
Exotic nuclear shapesquadrupoleoctupolehexadecapole the largest deformations at the highest spins fusion-evaporation with intense n-rich RIB high-spin spectroscopy

Слайд 62Limits of existence
mass, charge & ratio N/Z
spin & température

extrêmes shapes
The nucleus : a laboratory for
fundamental interactions and symmetries
Shell

structure and Isospin
Spin and shapes

TERRA INCOGNITA
( 5000 .. ou .. 7000 !!! )

Key nuclei for
stellar processes are far
from stability

SHE

A new landscape Far of Stability

Limits of existencemass, charge & ratio N/Z spin & température extrêmes shapesThe nucleus : a laboratory forfundamental

Слайд 64 Terra Incognita in the region of light very neutron-rich

nuclei
34Ne
35Na
37Mg
39Al
40Al
44Si
45P
31F
22
37Na
38Mg
40Mg
41Al
42Si
43Si
42Al
43Al
45Al
46Si
32
26
34Na
32Ne
33Na
47S
51Ar
49Cl
48S
28
30
34
46P
50Cl
52Ar
51Cl
50S
47P
FRLDM
Mo¨ller, P.,
At. Data Nucl. Data Tables 59,

185–381 (1995).

HFB Goriely, S., et al
Nucl. Phys. A 750, 425–443 (2005).

“Recent observation provides
experimental indication that the neutron drip line may be located further towards heavier isotopes in this mass region than is currently believed.”
T.Baumann et al. Nature 449/25, 2007

Terra Incognita in the region  of light very neutron-rich nuclei34Ne35Na37Mg39Al40Al44Si45P31F2237Na38Mg40Mg41Al42Si43Si42Al43Al45Al46Si322634Na32Ne33Na47S51Ar49Cl48S28303446P50Cl52Ar51Cl50S47PFRLDM Mo¨ller, P., At. Data Nucl.

Слайд 65Fission fragments 238U (,f) Eexit=15MeV,

Ntot1011c-1

Fission fragments 238U (,f)     Eexit=15MeV,   Ntot1011c-1

Слайд 66Зависимость энергии связи нейтрона
от изотопспина для легчайших ядер

Зависимость энергии связи нейтрона от изотопспина для легчайших ядер

Слайд 6712C (7.65 MeV, 0+) – «состояние Хойла»
Определяет состав Вселенной.

Образование элементов

тяжелее
гелия происходит путем резонансного слияния трех альфа-частиц.

Увеличение ядерных сил на


несколько процентов опустит
уровень под порог.

Случайность?
Антропный принцип?

Схема уровней
ядра 12С

12C (7.65 MeV, 0+) – «состояние Хойла»Определяет состав Вселенной.Образование элементов тяжелеегелия происходит путем резонансного слияния трех альфа-частиц.Увеличение

Слайд 68Heavy nuclei: partial condensation

“Core” + nα
No

nuclei A  nα, Q > 0 in ground states
Actinide nuclei (A ≥ 220) have Q > 0
for A  nα, n ~ 10.

Dilute surface region of
α’s (“α-halo”), if exists, could contain some properties of
α-condensation matter

Large neutron excess can destroy α-clustering

Heavy nuclei: partial condensation

Слайд 69Основатели ОИЯИ
В.П.Джелепов
М.Г.Мещеряков
В.И.Векслер
Н.Н.Боголюбов, Д.И.Блохинцев
Г.Н.Флеров
И.М.Франк
Б.Понтекорво
Г.Неводничански
Л.Инфельд
Ван Ганчан
Г.Наджаков

Основатели ОИЯИВ.П.ДжелеповМ.Г.МещеряковВ.И.ВекслерН.Н.Боголюбов, Д.И.БлохинцевГ.Н.ФлеровИ.М.ФранкБ.ПонтекорвоГ.НеводничанскиЛ.ИнфельдВан ГанчанГ.Наджаков

Слайд 70Проблемы исследования ядер с нейтронным гало

Для объяснения повышенного сечения

электромагнитной диссоциации таких ядер предложен новый тип коллективного возбуждения при

малых энергиях возбуждения. Эта новая мода возбуждения была названа “мягким дипольным резонансом”.

Необходимо получить данные о новых более тяжелых ядрах с гало .Пока известны только несколько ядер с двухнейтронным гало (6Не, 8Не,11Li, 14Be и 17В) и всего два ядра с однонейтронным гало (11Be и 19С) . Предсказывается существование многих других галообразных ядер.

Важным с точки зрения структуры и стабильности экзотических ядер является вопрос о последовательности заполнения оболочек. Требует также ответа на вопрос, при каких N и Z происходит заполнение оболочек, какое влияние оказывает спаривание и роль оболочек, в том числе деформированных, на стабильность ядер.

Зависимости радиусов ядер от нейтронного избытка. Использование вторичных пучков радиоактивных ядер позволит определить изоспиновую зависимость пространственного распределения ядерного вещества для многих экзотических ядер

Остается вопрос о корреляциях нуклонов нейтронного гало.Ожидается, что эксперименты с использованием “полной кинематики” могут дать ответ на этот вопрос.

Существование динейтрона и тетранейтрона в ядрах с нейтронным гало а также гало из более крупных кластеров

Проблемы исследования ядер с нейтронным гало Для объяснения повышенного сечения электромагнитной диссоциации таких ядер предложен новый тип

Слайд 71Where one can look for α- condensation
Light nuclei: excited states

near the thresholds

A  nα (12C, 16O, …)

Heavy nuclei: systems of the type
“Core” + nα
Where one can look for α- condensationLight nuclei: excited states near the thresholds

Слайд 72

Энергия возбуждения (МeV/ A)
Experimental dependence of

the nuclear temperature on its excitation energy.

The data were obtained at JINR (Dubna), GSI (Germany) and CERN (Switzerland). Inflections in the curves drawn through the experimental points correspond to a phase transition «liquid-gas».
Энергия возбуждения (МeV/ A)

Слайд 73 An Extra Push of Stability For

F-Ne-Na Neutron Nuclei

An Extra Push of Stability For F-Ne-Na Neutron Nuclei

Слайд 74Radioactive nuclear beams opportunities

Production of exotic (RIB)

beams
RIB facilities
ISOLDE, FAIR, SPIRAL 2, EURISOL, DRIBs
RIB

physics
Nuclear structure
Nuclear reactions
Nuclear Astrophysics
Why do we need high intensity RIB?
Radioactive nuclear beams   opportunities   Production of exotic (RIB) beams   RIB facilitiesISOLDE,

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика