Разделы презентаций


1 Modes of Ventilation Dr. Eugenia Mahamid Rambam Medical Center

Содержание

Modes of VentilationThe main indication for ventilatory support is Respiratory Failure

Слайды и текст этой презентации

Слайд 1 Modes of Ventilation Dr. Eugenia Mahamid Rambam Medical Center

Modes of Ventilation  Dr. Eugenia Mahamid Rambam Medical Center

Слайд 2Modes of Ventilation

The main indication for ventilatory support
is
Respiratory

Failure

Modes of VentilationThe main indication for ventilatory support is Respiratory Failure

Слайд 3Categories of Respiratory Failure
HYPOXEMIC
ARDS
PULMONARY EDEMA
PULMONARY HEMORRHAGE
PNEUMONIA

Low compliance lung disease:
Low

PO2, Low SaO2


Categories of Respiratory FailureHYPOXEMIC 	ARDS	PULMONARY EDEMA	PULMONARY HEMORRHAGE	PNEUMONIALow compliance lung disease:	Low PO2, Low SaO2

Слайд 4HYPERCARBIC
OBSTRUCTION TO AIRFLOW
NEUROMUSCULAR DISORDERS

DRUG OVERDOSE
ENDOCRINOPATHIES

Increase in PCO2
Respiratory acidosis
Decrease in

pH


Categories of Respiratory Failure

HYPERCARBIC   OBSTRUCTION TO AIRFLOW  NEUROMUSCULAR DISORDERS  DRUG OVERDOSE  ENDOCRINOPATHIES	Increase in PCO2 	Respiratory

Слайд 5ECE
CENTRAL
DECREASED LEVEL OF


CONSCIOUSNESS


ACUTE MEDICAL

AND SURGICAL
CONDITIONS
MECHANICAL VENTILATION IS USED TO
DECREASE WORK OF BREATHING

Categories of Respiratory Failure

ECE  CENTRAL  DECREASED LEVEL OF         CONSCIOUSNESS

Слайд 6A MECHANICAL VENTILATOR is
a pump providing an external source of

energy to push

gases into the lungs and allow for passive exhalation (CO2 elimination).

Ventilator’s Changeable parameters

Vt = Tidal Volume
FIO2 = Fraction of Inspired Oxygen
RR = Respiratory Rate
I:E = Inspiratory to Expiratory ratio
EEP = End Expiratory Pressure
PIP = Peak Inspiratory Pressure Inspiratory Flow Rate

A MECHANICAL VENTILATOR isa pump providing an external source of energy to push

Слайд 7 NO = Nitric Oxide

Orientation of patient’s body in

gravitational field
OTHER MEANS AFFECTING VENTILATION

NO = Nitric Oxide Orientation of patient’s body in gravitational field OTHER MEANS AFFECTING VENTILATION

Слайд 8GENERAL CLASSES OF VENTILATORS
Negative pressure
application of negative pressure at

the chest wall and upper abdomen


Positive pressure
application of positive pressure

at airway opening


GENERAL CLASSES OF VENTILATORSNegative pressure application of negative pressure at the chest wall and upper abdomenPositive pressureapplication

Слайд 9Negative Pressure Ventilators
-
Perithoracic pump for replacement failing patients’ muscles, wide-spread

use for polio epidemics

Manually operated ventilator (Woillez, 1876)

Tank respirator “iron lung”, cuirass, body suits
(1930 - 1950)

Patient care problems:
airway obstruction, low efficacy in interstitial lung diseases, patient’s discomfort

Negative Pressure Ventilators-Perithoracic pump for replacement failing patients’ muscles, wide-spread use for polio epidemics  Manually operated

Слайд 10Negative Pressure Ventilators
1876
1930-1950
1960

Negative Pressure Ventilators18761930-19501960

Слайд 11Positive pressure ventilators
Volume-cycled
Delivers set Vt at specified RR

and terminates
respiration when Vt is delivered.
Airway pressures are determined by

respiratory system impedance (risk of barotrauma).

Pressure-cycled
Limits flow, when set pressure is
delivered (may decrease minute ventilation)


Positive pressure ventilatorsVolume-cycled  	Delivers set Vt at specified RR and terminates	respiration when Vt is delivered.	Airway pressures

Слайд 12Positive pressure ventilators
Evita 2
Dragger - Germany

Positive pressure ventilatorsEvita 2Dragger - Germany

Слайд 13VENTILATOR SETTINGS
OXYGEN THERAPY

O2 delivery =

Qt (1.39 x SaO2 x Hb + 0.0031 x PaO2)


FIO2 1 0.4

Adjustment of oxygen percent to achieve
SaO2 > 90%

FIO2 > 0.6 potential oxygen toxicity
(pulmonary fibrosis)

VENTILATOR SETTINGSOXYGEN THERAPY     O2 delivery = Qt (1.39 x SaO2 x Hb +

Слайд 14MINUTE VENTILATION (VOLUME) = Vt x RR
Physiologic Vt

5mL/kg
Mechanical Vt

7 – 10mL/kg

Limitation of Vt in cases of:
airway obstruction
one lung patient
PIP > 40 cm H2O

RESPIRATORY RATE
10-12 /min or more
to match metabolic needs of the patient

VENTILATOR SETTINGS

MINUTE VENTILATION (VOLUME) = Vt x RR		Physiologic Vt         5mL/kg		Mechanical

Слайд 15


Inspiratory Flow Rate and Inspiratory to Expiratory Ratio

IFR L/min:

rapidity of airflow in airways
Ti

= Inspiratory Time: the time to complete inspiration
Ti = Vt / Flow Rate
TE = Expiratory Time: time to complete exhalation
Ti + TE = T total: respiratory cycle

VENTILATOR SETTINGS

Inspiratory Flow Rate and Inspiratory to Expiratory RatioIFR L/min: rapidity of airflow in airways

Слайд 16CMV : Controlled Mandatory Ventilation
Full mechanical support
Maintaining full V min.
Reduction

of oxygen and energy consumption
Indications:
Following intubation
Respiratory muscle fatigue ( for

muscle rest)
Poor cardiac output ( VO2 of respiratory muscles)

CONVENTIONAL VENTILATION

CMV : Controlled Mandatory VentilationFull mechanical support	Maintaining full V min.	Reduction of oxygen and energy consumptionIndications:	Following intubation	Respiratory muscle

Слайд 17CMV



fixed rate
fixed Vt
fixed flow rate
FIO2
Disadvantages:
need for sedatives + relaxants

unresponsiveness to the changing V min. of patient
muscle atrophy
CONVENTIONAL

VENTILATION

Airway pressure

Flow

inspirium

expirium

Patient’s spontaneous effort

CMVfixed ratefixed Vtfixed flow rateFIO2Disadvantages: need for sedatives + relaxants unresponsiveness to the changing V min. of

Слайд 18ASSIST / CONTROL
 Mechanical breath initiated by patient’s negative pressure.

Every breath is machine supported (set Vt)






Disadvantages:
alkalosis
intrinsic PEEP
barotrauma: pneumothorax, pneumomediastinum,
subcutaneous emphysema, tension air cyst

CONVENTIONAL VENTILATION

Airway pressure

Flow

inspirium

expirium

Patient’s spontaneous effort

ASSIST / CONTROL Mechanical breath initiated by patient’s negative pressure. Every breath is machine supported (set Vt)

Слайд 19 IMV INTERMITTENT MANDATORY VENTILATION
combined mechanical and

spontaneous breathing
(CMV + spontaneous)












CONVENTIONAL VENTILATION
Spontaneous ventilation
5
0
inspirium
expirium
IMV
5
0
5
0
CMV
Patient’s spontaneous effort

IMV INTERMITTENT MANDATORY VENTILATION 	combined mechanical and spontaneous breathing	(CMV + spontaneous)	 	CONVENTIONAL VENTILATIONSpontaneous ventilation50inspiriumexpiriumIMV5050CMVPatient’s

Слайд 20SIMV SYNCHRONIZED INTERMITTENT MANDATORY VENTILATION

 Synchronization of the ventilator delivered

Vt with the
patient’s spontaneous breathing.

 Prevention

of ventilator stacking by timing window.








CONVENTIONAL VENTILATION

A

B

Timing window

Patient’s spontaneous effort

Time (sec)

Pressure
cm H2O

PEEP

SIMV SYNCHRONIZED INTERMITTENT MANDATORY VENTILATION	 Synchronization of the ventilator delivered Vt with the    patient’s

Слайд 21Controlled FIO2
Gas source
Reservoir
bag
Conventional
ventilator
One-way valve
PEEP
and
Exhalation
Valves

IMV CIRCUIT
CONVENTIONAL VENTILATION

Controlled FIO2Gas sourceReservoirbagConventionalventilatorOne-way valvePEEPand ExhalationValves IMV CIRCUITCONVENTIONAL VENTILATION

Слайд 22
IMV / SIMV

Advantages

 decreased need in sedatives
prevention of

muscle atrophy

 lower airway pressure and intrathoracic pressure

hemodynamic stability

 reduction in alkalosis
patient’s ability to regulate his rate and Vt according to metabolic requirements

CONVENTIONAL VENTILATION

IMV / SIMVAdvantages			decreased need in sedatives		   prevention of muscle atrophy	 	lower airway pressure and 					intrathoracic

Слайд 23

IMV / SIMV

Disadvantages

 respiratory muscle fatigue
increased

work of breathing due to highly resistant respiratory circuit, small

diameter (ETT)

 possibility of respiratory acidosis


 risk of cardiac decompensation
in patient with heart disease

CONVENTIONAL VENTILATION

IMV / SIMVDisadvantages    	respiratory muscle fatigue	 	increased work of breathing due to highly 				resistant

Слайд 24PEEP and CPAP

During continuous mechanical ventilation
PEEP

Positive End Expiratory Pressure











50
40
30
20
10
0
cm H2O
CMV
PEEP
50
40
30
20
10
0
CMV
PEEP
Patient triggered
cm H2O

PEEP and CPAPDuring continuous mechanical ventilation   	PEEP  Positive End Expiratory Pressure50403020100cm H2OCMVPEEP50403020100CMVPEEPPatient triggeredcm H2O

Слайд 25PEEP and CPAP

During spontaneous breathing
with or without

inspiratory support

CPAP Continuous Positive Airway Pressure











15

10

5

0

- 5

inspiration

expiration

PEEP

PEEP and CPAPDuring spontaneous breathing   	with or without inspiratory support 	CPAP Continuous Positive Airway Pressure

Слайд 26

















Mechanism

- Decreases Qs/Qt
without reducing edema

- Reduces number
of flooded alveoli

- Redistributes edema to
peribroncho vascular
interstitial spaces

- Decreases work
of breathing

- Decreases preload

NON PEEP

PEEP

78.6 μ

146.8 μ

80%

20 %

Qs / Qt 23.8 % 5.1 %

PEEP & CPAP


Слайд 27

Goals


 Reduction of shunt
recruitment of previously collapsed alveoli
ventilation

of non-ventilated zones
continuous gas exchange (during expiration)

 Prevention

of atelectasis
prevention of brisk alveolar inflation and deflation
> protection of surfactant and pulmonary parenchyma



PEEP and CPAP

Goals   	Reduction of shunt		recruitment of previously collapsed alveoli		ventilation of non-ventilated zones		continuous gas exchange (during expiration)

Слайд 28
Complications
 increased intrathoracic pressure

decrease of venous returns

decrease of cardiac output











EFFECT of PEEP

venous

compression

PEEP and CPAP

Complications   increased intrathoracic pressure     decrease of venous returns

Слайд 29


Complications

 Increased ADH secretion, decrease of renal

artery perfusion pressure
decrease of urinary output and creatinine

clearance

 decreased venous return from brain
increased ICP
decrease of CPP

 barotrauma – induced by PEEP ≈ 20%

PEEP and CPAP

Complications   	Increased ADH secretion, decrease of renal artery 	perfusion pressure  		decrease of urinary

Слайд 30PEEP / CPAP Therapy

Titrate EEP until:

 PO2 ≈ 60 mmHg

(Sat O2 ≈ 90%) on FIO2 < 60%

provided cardiac output is maintained

 Qs / Qt < 15%

 Best PEEP on
volume-pressure
loop




15

30

B

D

C

A

Lower inflection point

Upper deflection point

500

250

Volume (mL)

Pressure cmH20

0

PEEP / CPAP TherapyTitrate EEP until: PO2 ≈ 60 mmHg (Sat O2 ≈ 90%) on FIO2 <

Слайд 31
PRESSURE SUPPORT VENTILATION (PS)

patient triggered, patient-controlled (flow-time),
pressure limited interactive ventilation

with clinician- selected level of positive pressure (2-50 cm H2O)











20
15
10

5

B

C

A

D

time

Proximal
Airway
Pressure
cmH20


PRESSURE SUPPORT VENTILATION (PS)	patient triggered, patient-controlled (flow-time),	pressure limited interactive ventilation with clinician-	selected level of positive pressure (2-50

Слайд 32
PRESSURE SUPPORT VENTILATION (PS)

Synchrony

PS interaction with ventilatory muscles
PS adds

to the patient’s effort to deliver Vt

Overload of ventilatory muscles

tachypnea, small Vt

PS Vt, RR





Vt mL/kg

Ventilator pressure

Muscle tension

12

8

4

PRESSURE SUPPORT VENTILATION (PS)SynchronyPS interaction with ventilatory muscles 	PS adds to the patient’s effort to deliver VtOverload

Слайд 33
PRESSURE SUPPORT VENTILATION (PS)

Synchrony

Patient interaction

with ventilator:

 Trigger
(prompt breath initiation,

ventilator sensitivity and responsiveness)
 Flow
adjustment of the gas delivery to the patient’s effort
 Cycling
ventilator breath termination with the end of patient’s effort 25-30% of peak flow
PRESSURE SUPPORT VENTILATION (PS) Synchrony    Patient interaction with ventilator:     Trigger

Слайд 34
PRESSURE SUPPORT VENTILATION (PS)

Titration of PS

 to overcome endotracheal

tube resistance
(6-10 cmH2O)

 to achieve effective Vt and V

min without
causing respiratory overload

 non-invasive application
BIPAP* = CPAP + Pressure Support

*Bi-level Positive Airway Pressure


PRESSURE SUPPORT VENTILATION (PS)	Titration of PS	  	to overcome endotracheal tube resistance		(6-10 cmH2O)	  	to achieve effective

Слайд 35

PRESSURE CONTROL VENTILATION
Time and pressure controlled
Exhalation is passive
Vt and V

min determined by respiratory system impedance
(compliance and resistance)

Inverse ratio ventilation

(IRV) I : E 3:1
Mandatory BIPAP








PEEP

pressure

T- inspiratory

T- expiratory

P. inspiratory

Tidal volume

volume

NON CONVENTIONAL VENTILATION

PRESSURE CONTROL VENTILATIONTime and pressure controlledExhalation is passiveVt and V min determined by respiratory system impedance(compliance and

Слайд 36

Airway pressure release ventilation (APRV)














pressure
PEEP
Spontaneous breathing
time
volume
Spontaneous tidal volume
Tidal volume
P. inspiratory
NON

CONVENTIONAL VENTILATION

Airway pressure release ventilation (APRV)pressurePEEPSpontaneous breathingtimevolumeSpontaneous tidal volumeTidal volumeP. inspiratoryNON CONVENTIONAL VENTILATION

Слайд 37NON CONVENTIONAL VENTILATION
Indication: severe hypoxemic respiratory failure










Breathing lung
(baby

lung)
Edema
ARDS ( CT )
Pleural effusion

NON CONVENTIONAL VENTILATIONIndication:  severe hypoxemic respiratory failureBreathing lung (baby lung)EdemaARDS  ( CT )Pleural effusion

Слайд 38NON CONVENTIONAL VENTILATION
Open Lung Conception
Pressure controlled, Inverse ratio ventilation with

permissive hypercapnia:
Permissive hypercapnia = increase of PCO2 until pH reaches

7.2
at pH < 7.2 give bicarbonate
Prone position




Nitric Oxide
Selective pulmonary vasodilator

Gravitational force

NON CONVENTIONAL VENTILATIONOpen Lung ConceptionPressure controlled, Inverse ratio ventilation with permissive hypercapnia:Permissive hypercapnia = increase of PCO2

Слайд 39NON CONVENTIONAL VENTILATION
Proportional assist ventilation for spontaneously breathing patients

gives maximal Vt with minimal inspiratory pressure, by

measuring
lung compliance and resistance

Perflubron liquid ventilation
 injection of perfluorocarbon into the trachea aiming to recruiting
collapsed alveoli.

ECMO Extra Corporeal Membrane Oxygenator






IVOX IntraVenous Oxygenator (membrane “lung” inserted in inferior
vena cava
NON CONVENTIONAL VENTILATIONProportional assist ventilation for spontaneously breathing patients    gives maximal Vt with minimal

Слайд 40

HIGH FREQUENCY VENTILATION

RR 60 – 3600 / min
CONVECTION
DIFFUSION
TYPES
I.

HFPPV high frequency positive pressure ventilation
II.

HFO high frequency oscillation
III. HFJT high frequency jet ventilation


INDICATIONS
I. Broncho-pleural fistula
II. Hypoxemic respiratory failure

NON CONVENTIONAL VENTILATION

HIGH FREQUENCY VENTILATION	RR 60 – 3600 / min				CONVECTION				DIFFUSION	TYPES	I.   HFPPV high frequency positive pressure ventilation 	II.

Слайд 41VEANING FROM MECHANICAL VENTILATION

Necessary conditions for considering discontinuation from Mechanical

Ventilation:

Stable circulation and absence of myocardial ischemia, sepsis and uncontrolled

acidosis

Adequate pulmonary O2 exchange as evidenced by
SaO2 > 90% with FIO2 < 0.4 and PEEP < 7.5 cm H2O

Adequate ability to ventilate spontaneously (Vt > 5 mL/Kg, VC = 3 x Vt, NIF > 30 cmH2O, and f < 36 /min)



VEANING FROM MECHANICAL VENTILATIONNecessary conditions for considering discontinuation from Mechanical Ventilation:Stable circulation and absence of myocardial ischemia,

Слайд 42VEANING FROM MECHANICAL VENTILATION




CMV > SIMV CPAP

+ PS (15 cmH2O) + PS

(15 cmH2O)

CPAP
+ PS (8 cm H2O)



Disconnection + T Tube Extubation + O2 mask


VEANING FROM MECHANICAL VENTILATIONCMV > SIMV			 CPAP       + PS (15 cmH2O)

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика