Разделы презентаций


Thermal radiation

Содержание

Quick Quiz 2Using Figure as a starting point, make a sketch of the combined diffraction and interference pattern for 650-nm light waves striking two 3.0 μm slits located 9.0 μm apart.

Слайды и текст этой презентации

Слайд 1Quick Quiz 1

If a classroom door is open slightly, you

can hear sounds coming from the hallway. Yet you cannot

see what is happening in the hallway. Why is there this difference? (a) Light waves do not diffract through the single slit of the open doorway. (b) Sound waves can pass through the walls, but light waves cannot. (c) The open door is a small slit for sound waves, but a large slit for light waves. (d) The open door is a large slit for sound waves, but a small slit for light waves.
Quick Quiz 1If a classroom door is open slightly, you can hear sounds coming from the hallway.

Слайд 2Quick Quiz 2

Using Figure as a starting point, make a

sketch of the combined diffraction and interference pattern for 650-nm

light waves striking two 3.0 μm slits located 9.0 μm apart.
Quick Quiz 2Using Figure as a starting point, make a sketch of the combined diffraction and interference

Слайд 3Quick Quiz 3

Cat’s eyes have pupils that can be modeled

as vertical slits. At night, would cats be more successful

in resolving
(a) headlights on a distant car, or
(b) vertically-separated lights on the mast of a distant boat?
Quick Quiz 3Cat’s eyes have pupils that can be modeled as vertical slits. At night, would cats

Слайд 4Quick Quiz 4

If laser light is reflected from a phonograph

record or a compact disc, a diffraction pattern appears. This

is due to the fact that both devices contain parallel tracks of information that act as a reflection diffraction grating. Which device, (a) record or (b) compact disc, results in diffraction maxima that are farther apart in angle?
Quick Quiz 4If laser light is reflected from a phonograph record or a compact disc, a diffraction

Слайд 5Course of lectures «Contemporary Physics: Part2»
Lecture №5

Thermal radiation. Emissivity and

absorptivity of the matter and their ratios. Blackbody radiation. Stefan–Boltzmann

law. Derivation of the Planck Distribution Law. Wien's displacement law. The Rayleigh–Jeans law.
Course of lectures «Contemporary Physics: Part2»Lecture №5Thermal radiation. Emissivity and absorptivity of the matter and their ratios.

Слайд 6Thermal radiation
Kirchhoff's law
Т
(1)
(2)
Ratio of the emissivity of the body to

its absorptivity is the same for all bodies and universal

function of frequency and temperature of the body, equals to the emissivity of the black body ε(ν,T).
Thermal radiationKirchhoff's lawТ(1)(2)Ratio of the emissivity of the body to its absorptivity is the same for all

Слайд 7Good model of this body is the small gap in

closed cavity. Light, falling through the gap in the cavity

after numerical reflections, will be practically almost absorbed by the walls and the gap outside will seem absolutely black.

If the cavity is heated up to some temperature T and inside the thermal equilibrium is established, then the own radiation of the cavity will be the radiation of the black body.

Good model of this body is the small gap in closed cavity. Light, falling through the gap

Слайд 8
In 1879  Stephen on the base of the analysis of

the experimental data found that the integral radiance of the

black body is proportional to the 4th degree of absolute temperature T:

In 1884 Boltzmann theoretically show this dependence from thermodynamical consideration. This law is the law of the Stephen- Boltzmann. Numerical method of the constant σ is
σ = 5,671·10–8 Вт / (м2 · К4).

Spectral density of radiation of the black body



In 1879  Stephen on the base of the analysis of the experimental data found that the integral

Слайд 9Displacement law
Location of the maximum of spectral density of radiation

of the black body on the axis of the wavelength

is reversely proportional to the body temperature.

b =0.2898.10-2м.оК=2898 мкм.оК

Wien's law

Magnitude of the spectral density of black body radiation proportional the temperature in 5th degree.


Where

А , а -proportional coefficients


Displacement lawLocation of the maximum of spectral density of radiation of the black body on the axis

Слайд 10(1)
(2)
(3)
(4)
(5)
the Rayleigh–Jeans law
Power on unit spectral interval

(1)(2)(3)(4)(5)the Rayleigh–Jeans lawPower on unit spectral interval

Слайд 11Wien's law
Planck concluded, that the radiation and absorption processes by

heated bodies of the electromagnetic energy happen not continuously, as

it was considered by classic physics, but finite portions – quants.

The spectral density of blackbody radiation


Wien's lawPlanck concluded, that the radiation and absorption processes by heated bodies of the electromagnetic energy happen

Слайд 12Planck equation at small x (high frequencies or big wavelength)

almost coincides with semiempirical Wien’s law. At low frequencies (hν 

Planck equation transfers to the Rayleigh–Jeans law.


Planck equation at small x (high frequencies or big wavelength) almost coincides with semiempirical Wien’s law. At

Слайд 13Real bodies have different radiation and absorption. There is the

coefficient of “grayness” of spectral ελ and integral ε

radiation coefficient (don’t confuse withс ε (Т) – emissivity and ε- dielectric constant).

For calculation of radiation (luminosity) of real body on Stephen- Boltzmann law it used the ratio:

If the body is “gray”

If

The body is colors and there is additional optical phenomenon: interference, diffraction, luminescence.

Sometimes to estimate the reflection of radiance from the body it is convenient to use not the “gray” coefficient ε, but coefficient of whiteness «albedo»: α=1−ε


Real bodies have different radiation and absorption. There is the coefficient of “grayness” of spectral ελ

Слайд 14Dielectic radiation
coefficients
for (ω/c) ηλ*L>>1
Rλ is the reflection

coefficient of the surface dielectric-vacuum (depends on the wavelenght). Nλ

is the refraction coefficient, ηλ is the index of refraction of the material, L is the thickness of dielectric layer.

At the condition. That all radiation, which doesn’t reflect from the edge of thick non transparent or semitransparent dielectric, absorbed in its thickness or on other edge.


Dielectic radiation coefficients for  (ω/c) ηλ*L>>1Rλ is the reflection coefficient of the surface dielectric-vacuum (depends on

Слайд 15Integral radiation coefficient of several dielectrics as the function of

temperature : 1- rubber, 2- porcelain, 3-cork, 4-paper, 5 fire-clay.
Any

material, covered by thin transparent dielectric layer, change its “gray” coefficient because of reflection of frontal waves, radiated body on the surface dielectric-vacuum and total internal reflection of oblique beams on this surface.

where εom is the integral radiation coefficient of the material, n is the index of refraction of films dielectric, σ angle of total internal reflection.

T, oK


Integral radiation coefficient of several dielectrics as the function of temperature : 1- rubber, 2- porcelain, 3-cork,

Слайд 16Spectral radiation coefficient ελ of some metals: 1-graphite, 2-copper, 3-iron,

4-aluminum, 5-silver.
Metal radiation coefficients
Metals, especially polished, have small radiation coefficient.


Radiation coefficient of metals Коэффициент излучения металлов uniquely connected with its index of reflection. The last one depends not only on concentration of unbound electrons and electron oscillation frequency, but on the scattering of oscillating electrons (their interaction with the impurities and defects) and magnetic permittivity of metal μ. Scattering is defined by conductivity of metals σ.

σ is electroconductivity of metals, с is the speed of light, ω is cyclic frequency of radiation.



Spectral radiation coefficient ελ of some metals: 1-graphite, 2-copper, 3-iron, 4-aluminum, 5-silver.Metal radiation coefficientsMetals, especially polished, have

Слайд 17
Integral radiation coefficient of some metals.
1-nickel, 2-tungsten, 3-platinum.

Integral radiation coefficient of some metals.1-nickel, 2-tungsten, 3-platinum.

Слайд 18Dependence of radiation coefficient from the angle of observation

Integral radiation

coefficient ε as a function of the angle of observation
1

– black body; 2 – gray body; 3-5 – dielectrics with the indexes of refraction n=1.5; 2 and 4 respectively;
6 – metal.

the angle of observation

Dependence of radiation coefficient from the angle of observationIntegral radiation coefficient ε as a function of the

Слайд 19Selective coating are special coatings for heat control.
Coating of cupper

collector of solar radiance by film from copper oxide led

to increase the radiation coefficient of solar radiance from λ =0.3-3мкм, the same time it possible to decrease the heat losses form λ =5-15мкм.

Color «ivory» (also snow and glass powder increase the heat because of high повышают теплоотдачу излучением за счёт высокой emissivity in the range λ =3-15 mkm, but looks like white in the visible range of the wavelength from λ =0.3-1mkm (all radiation in this range is reflected).


Selective coating are special coatings for heat control.Coating of cupper collector of solar radiance by film from

Слайд 20




objective
ocular
Приёмник
galvanometer

The hot object
Radiation pyrometers
Пирометры основаны на фокусировке излучения раскаленной поверхности

на теплоприемнике. Яркость сфокусированного изображения не зависит от расстояния до

объекта, если оно велико по сравнению с фокусным расстоянием объектива. Важно, чтобы создаваемое объективом изображение полностью перекрывало теплоприемник. Предварительно производится градуировка пирометра по абсолютно черному телу.

Поскольку энергетическая светимость реальной раскаленной поверхности при той же температуре меньше светимости абсолютно черного тела (в соответствии с законом Кирхгофа), измеренная радиационная температура оказывается меньше действительной.

В справочниках имеются соответствующие поправочные коэффициенты, учитывающие отличие светимости поверхностей реальных материалов от светимости абсолютно черного тела. Значения этих коэффициентов в свою очередь зависят от температуры.


objectiveocularПриёмникgalvanometerThe hot objectRadiation pyrometersПирометры основаны на фокусировке излучения раскаленной поверхности на теплоприемнике. Яркость сфокусированного изображения не зависит

Слайд 21Яркостные пирометры.
Действие пирометра основано на сравнении яркости свечения тела,

температура которого измеряется, и нити лампы накаливания. Через красный светофильтр

производится наблюдение (λ=660 нм). Применение пирометров обычно связано с металлургией. Производится наблюдение, например, окошка в стенки доменной или мартеновской печи. На фоне изображения светящегося окошка наблюдается нить лампочки накаливания. Регулируя ток через лампочку, добиваются уравнивания их яркостей в красном цвете. При этом нить лампочки становится невидимой - потому такой пирометр называют пирометром с “исчезающей” нитью. Пирометр градуиру-ется по абсолютно черному телу - при изменении тока накала по находящейся в поле наблюдения шкале считывается температура черного тела, при котором нить должна “исчезать”.



 
 

Поскольку светимость реального тела при той же температуре меньше, для достижения равенства яркостей черного и нечерного тел это последнее должно быть нагрето сильнее, измеренная яркостная температура тоже оказывается меньше действительной (Также как и у радиационного пирометра).


Яркостные пирометры. Действие пирометра основано на сравнении яркости свечения тела, температура которого измеряется, и нити лампы накаливания.

Слайд 22Цветовые пирометры.
Серое тело имеет тот же спектральный состав, что

и абсолютно черное тело. Поэтому температуру серого тела можно определить

в соответствии с законом смещения Вина, определив длину волны λm, на которую приходится максимум излучения. Однако, вместо исследования всего спектра излучения, производятся измерения светимостей на двух различных частотах (при двух значениях длин волн) и по их отношению определяется температура тела - для черного тела при любой температуре это отношение известно. Этот пирометр отличается от радиационного тем, что наблюдения производятся через сменные светофильтры.






Объектив

окуляр

Приёмник

гальванометр


Раскалённый объект



Сменный светофильтр


Как правило, измеренная температура выше истинной, а показания ближе к истинным, чем у радиационного и яркостного методов измерения температуры.

Цветовые пирометры. Серое тело имеет тот же спектральный состав, что и абсолютно черное тело. Поэтому температуру серого

Слайд 23Учебный фильм
«Лучистый теплообмен»
Нобелевская премия по физике в 2006 году присуждена

за
«абсолютно черное тело».
Радиометр Крукса

Учебный фильм«Лучистый теплообмен»Нобелевская премия по физике в 2006 году присуждена за «абсолютно черное тело».Радиометр Крукса

Слайд 28Quick Quiz 1

If a classroom door is open slightly, you

can hear sounds coming from the hallway. Yet you cannot

see what is happening in the hallway. Why is there this difference? (a) Light waves do not diffract through the single slit of the open doorway. (b) Sound waves can pass through the walls, but light waves cannot. (c) The open door is a small slit for sound waves, but a large slit for light waves. (d) The open door is a large slit for sound waves, but a small slit for light waves.
Quick Quiz 1If a classroom door is open slightly, you can hear sounds coming from the hallway.

Слайд 29Quick Quiz 2

Using Figure as a starting point, make a

sketch of the combined diffraction and interference pattern for 650-nm

light waves striking two 3.0 μm slits located 9.0 μm apart.
Quick Quiz 2Using Figure as a starting point, make a sketch of the combined diffraction and interference

Слайд 30Quick Quiz 3

Cat’s eyes have pupils that can be modeled

as vertical slits. At night, would cats be more successful

in resolving
(a) headlights on a distant car, or
(b) vertically-separated lights on the mast of a distant boat?
Quick Quiz 3Cat’s eyes have pupils that can be modeled as vertical slits. At night, would cats

Слайд 31Quick Quiz 4

If laser light is reflected from a phonograph

record or a compact disc, a diffraction pattern appears. This

is due to the fact that both devices contain parallel tracks of information that act as a reflection diffraction grating. Which device, (a) record or (b) compact disc, results in diffraction maxima that are farther apart in angle?
Quick Quiz 4If laser light is reflected from a phonograph record or a compact disc, a diffraction

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика