3) Промежутки возрастания, убывания функции.
8) Выпуклость функции.
План прочтения графика:
Современное определение показательной, логарифмической и тригонометрических функций — заслуга Леонарда Эйлера, так же как и их символика.
(b ; c)
Вывод:
5)не имеет ни наибольшего, ни наименьшего
значений;
6) непрерывна;
7) E(f) = (- ∞, + ∞);
8) выпукла вверх.
5)не имеет ни наибольшего, ни наименьшего
значений;
6) непрерывна;
7) E(f) = (- ∞, + ∞);
8) выпукла вниз.
Функция убывает,
значит: yнаим.= -3
yнаиб. = 2
Монотонность логарифмической функции зависит от
основания логарифма.
Не каждый график логарифмической функции проходит
через точку с координатами (1;0).
Логарифмическая функция имеет наибольшее значение
и не имеет наименьшего значения при a >1 и наоборот
при 0 < a < 1.
Проверка:
Да, да, нет, да, нет, да, нет, да, нет
http://nayrok.ru
Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:
Email: Нажмите что бы посмотреть