Разделы презентаций


Харьковский национальный университет им В.Н.Каразина

Содержание

ЛитератураКурс высшей математики: Смирнов В.И. , 1-й т., М., Наука, 1974. – 480с.Курс высшей математики, Смирнов В.И., 2-й т., М., Наука, 1974. – 656с.Введение в математические основы САПР: Д. М. Ушаков

Слайды и текст этой презентации

Слайд 1Харьковский национальный университет им В.Н.Каразина
Лекция 3
Геометрическое моделирование





Ум заключается не только

в знании, но и в умении применять знания на деле


Аристотель






Кафедра теплофизики и молекулярной физики
Харьковский национальный университет им В.Н.КаразинаЛекция 3Геометрическое моделированиеУм заключается не только в знании, но и в умении применять

Слайд 2Литература
Курс высшей математики: Смирнов В.И. , 1-й т., М., Наука,

1974. – 480с.
Курс высшей математики, Смирнов В.И., 2-й т., М.,

Наука, 1974. – 656с.
Введение в математические основы САПР: Д. М. Ушаков — Санкт-Петербург, ДМК Пресс, 2012 г.- 208 с.
Введение в современные САПР: Владимир Малюх — Москва, ДМК Пресс, 2014 г.- 192 с.
Любые книги по Solid Works
ЛитератураКурс высшей математики: Смирнов В.И. , 1-й т., М., Наука, 1974. – 480с.Курс высшей математики, Смирнов В.И.,

Слайд 3План
Виды геометрического моделирования.
Функции твердотельного моделирования.
Декомпозиционные модели.
Конструктивные модели
Граничные модели. Корректность граничных

моделей
Пакеты геометрического моделирования

ПланВиды геометрического моделирования.Функции твердотельного моделирования.Декомпозиционные модели.Конструктивные моделиГраничные модели. Корректность граничных моделейПакеты геометрического моделирования

Слайд 4Виды геометрического моделирования

Виды геометрического моделирования

Слайд 5Виды геометрического моделирования

Подходы:

каркасное моделирование;
поверхностное моделирование;
твердотельное моделирование;
немногообразное моделирование.

Виды геометрического моделированияПодходы:каркасное моделирование;поверхностное моделирование;твердотельное моделирование;немногообразное моделирование.

Слайд 6Виды геометрического моделирования
В каркасном моделировании геометрическая
модель строится из ограниченного набора


графических примитивов - отрезки, дуги,
конические кривые.



Особенность:
каркасная модель содержит лишь
скелет



Виды геометрического моделированияВ каркасном моделировании геометрическаямодель строится из ограниченного набора графических примитивов - отрезки, дуги, конические кривые.Особенность:каркасная

Слайд 7Виды геометрического моделирования
Поверхностное моделирование – описание поверхности
геометрического тела, формирующие

его оболочку.
Применение: проектирование изделий из листового
металла (sheet metal parts)
Преимущества:
Достоверное

представление
любого по сложности объекта;
Контроль взаимно
расположенных деталей;
Подготовка управляющих
программ для станков.

Виды геометрического моделированияПоверхностное моделирование – описание поверхности геометрического тела, формирующие его оболочку.Применение: проектирование изделий из листового металла

Слайд 8Виды геометрического моделирования
Основной объект твердотельного моделирования –
трехмерное объемное тело,

которое может описываться
разными способами: декомпозиционным, конструктивным
или граничным
Преимущество:

свойство физической корректности – все
твердотельные модели имеют аналоги в реальном мире, т.е.
любую созданную в системе модель можно было бы
изготовить.
Простые тела: прямоугольная призма, сферическое тело,
цилиндрическое тело, коническое тело, торроидальное тело.

Тело на базе поверхностей: 
тело в форме листа.

Виды геометрического моделированияОсновной объект твердотельного моделирования – трехмерное объемное тело, которое может описываться разными способами: декомпозиционным, конструктивным

Слайд 9Виды геометрического моделирования
Тела на базе линий: 
тело выдавливания, тело вращения,



тело

сдвига, тело заметания,



тело на основе плоских сечений.

Виды геометрического моделированияТела на базе линий: тело выдавливания, 			тело вращения, тело сдвига, 				тело заметания, тело на основе плоских

Слайд 10Виды геометрического моделирования

Возможные действия над телами:
булево объединение тел;
булево пересечение тел;
булева

разность тел;
резка тела поверхностями;
построение симметричного тела;
построение эквидистантного тела;
построение тонкостенного тела;
скругление

(rounding ) ребер тела;
фаски ребер тела;
построение ребер жесткости;
построение тела с пустотами.
Виды геометрического моделированияВозможные действия над телами:булево объединение тел;булево пересечение тел;булева разность тел;резка тела поверхностями;построение симметричного тела;построение эквидистантного

Слайд 11Виды геометрического моделирования


С помощью немногообразного моделирования
(non-manifold) можно описывать

геометрические модели,
которые локально могут быть не только многообразиями
размерности три (объемными телами), но и размерности
два (поверхностями), один (кривыми), нуль (точками).
Виды геометрического моделирования           С помощью немногообразного моделирования

Слайд 12Функции твердотельного моделирования

Группы функций моделирования:
функции создания примитивов,
перенос и поворот

тела,
булевы операции,
функции заметания (sweeping ) и скиннинга (skinning), конструктивные элементы,
расчет

объемных параметров тела (объема, массы, моментов инерции).
Функции твердотельного моделирования Группы функций моделирования:функции создания примитивов,перенос и поворот тела,булевы операции,функции заметания (sweeping ) и скиннинга

Слайд 13Функции твердотельного моделирования
Твердотельные примитивы Булевы операции

Функции твердотельного моделирования  Твердотельные примитивы		Булевы операции

Слайд 14Функции твердотельного моделирования
Конструктивные элементы: скругление, поднятие,
проделывание отверстия.

Важные свойства

систем твердотельного моделирования:
возможность расчета объемных параметров тела –
объема,

центра масс, тензора инерции и пр.;
в большинстве современных CAD-систем пользователь
может создать свой набор конструктивных элементов;
в одной конкретной системе геометрического
моделирования могут поддерживаться не все функции
твердотельного моделирования, а только их часть.
Функции твердотельного моделированияКонструктивные элементы: скругление, поднятие, проделывание отверстия. Важные свойства систем твердотельного моделирования: возможность расчета объемных параметров

Слайд 15Декомпозиционные модели



ДМ - приближенное представление объемной модели в

виде совокупности непересекающихся простых тел.


Композиционное

Декомпозиционное
моделирование моделирование



Декомпозиционные модели   ДМ - приближенное представление объемной модели в виде совокупности непересекающихся простых тел. Композиционное

Слайд 16Декомпозиционные модели
Различают:
вексельное (voxel) представление;
октантное дерево;
ячеечное представление.

Воксельное (от англ. voxel -

volume pixel) представление
объемного тела является объемным аналогом растрового
представления

плоской фигуры.
Моделируемое тело представляется в виде булевого
трехмерного массива вокселей.

Декомпозиционные моделиРазличают:вексельное (voxel) представление;октантное дерево;ячеечное представление. Воксельное (от англ. voxel - volume pixel) представление объемного тела является объемным

Слайд 17Декомпозиционные модели
Октантное дерево (octree representation ) – развитие
воксельного представления.

Каждый узел

октантного дерева соответствует некоторому
кубу в трехмерном пространстве, который является

либо:
полностью (с заданной точностью) принадлежащим
описываемому телу;
- полностью непринадлежащим описываемому телу;
- частично пересекающимся с описываемым телом.

Декомпозиционные моделиОктантное дерево (octree representation ) – развитие воксельного представления.Каждый узел октантного дерева соответствует некоторому кубу в трехмерном

Слайд 18Декомпозиционные модели
Ячеечное представление (cell representation ) - равномерное заполнение моделируемого объема

узлами сетки, которые соединены между собой регулярным образом, образуя однотипные

ячейки (тетраэдры, треугольных призмы, шестигранники и т.п.).
ЯП чаще всего используется в системах конечно-элементного анализа
Декомпозиционные моделиЯчеечное представление (cell representation ) - равномерное заполнение моделируемого объема узлами сетки, которые соединены между собой регулярным

Слайд 19Конструктивные модели

CSG (constructive solid geometry)-модели реализуют
конструктивный подход в терминах

булевых операций над
параметрическими твердотельными примитивами

Конструктивные моделиCSG (constructive solid geometry)-модели реализуют конструктивный подход в терминах булевых операций надпараметрическими твердотельными примитивами

Слайд 20Граничные модели
Информация о границах тела делится на:
геометрические данные;
для вершин -

ее координаты;
для ребра - параметрическое уравнение кривой (прямой);
для грани

- параметрическое уравнение поверхности либо
тип и набор параметров в случае канонической поверхности (плоскости, сферы, цилиндра, конуса, тора).
топологические данные – это информация о смежности вершин и ребер, ребер и граней, а также о внутренних и внешних границах грани, модели:
многогранные (фасетные) модели;
вершинные модели;
полуреберные модели;
крыльевые реберные модели.
Граничные моделиИнформация о границах тела делится на:геометрические данные;для вершин - ее координаты;для ребра - параметрическое уравнение кривой

Слайд 21Корректность граничных моделей
Важное свойство: при работе с граничными моделями


является обеспечение их корректности.

Для автоматического обеспечения корректности
граничных моделей

используют операторы Эйлера,
основанные на формуле Эйлера-Пуанкаре:
v-e+f=2(s-h)+r,
где v - число вершин, е - число ребер, f - число граней,
s - число тел, h - число сквозных отверстий в телах,
r - количество внутренних границ (колец) в гранях.
Корректность граничных моделей Важное свойство: при работе с граничными моделями является обеспечение их корректности. Для автоматического обеспечения

Слайд 22Пакеты геометрического моделирования
Пакет геометрического моделирования (геометрическое ядро) – набор библиотек

с программным интерфейсом, с помощью которого можно пользоватьсяч функциями геометрического

моделирования.

Pro/Engineer, Unigraphics NX, CATIA построены на основе собственных геометрических ядер CGM, GRANITE, Parasolid соответственно;

SolidWorks, SolidEdge,T-Flex, Adem построены на основе лицензированных геометрических ядер (Parasolid, ACIS, GRANITE).


Пакеты геометрического моделированияПакет геометрического моделирования (геометрическое ядро) – набор библиотек с программным интерфейсом, с помощью которого можно

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика