Разделы презентаций


Lecture № 5 Solutions. Equilibrium in solutions of strong and weak electrolytes

Содержание

1. Classification of solutions2. Solutions and concentration3. Strong and weak electrolytes4. Colligative properties: osmosis5. Osmosis6. The pH conceptContext7. Strong acids and bases8. Acids and bases: different approaches9. Conjugate acids and bases11.

Слайды и текст этой презентации

Слайд 1Lecture № 5 Solutions. Equilibrium in solutions of strong and

weak electrolytes

Lecture № 5   Solutions. Equilibrium in solutions of strong and weak electrolytes

Слайд 21. Classification of solutions
2. Solutions and concentration
3. Strong and weak

electrolytes
4. Colligative properties: osmosis
5. Osmosis
6. The pH concept
Context
7. Strong acids

and bases

8. Acids and bases: different approaches

9. Conjugate acids and bases

11. pH in solutions of strong and weak acids

10. Weak acids and bases

12. Solutions of weak acids, weak bases and salts

1. Classification of solutions2. Solutions and concentration3. Strong and weak electrolytes4. Colligative properties: osmosis5. Osmosis6. The pH

Слайд 3Solvent — a substance that for convenience is treated differently from the

other substances (solutes)
Classification of solutions
Solution — homogeneous mixture of a various

composition that consists of components uniformly distributed on a molecular level
Solvent — a substance that for convenience is treated differently from the other substances (solutes) Classification of solutionsSolution — homogeneous mixture

Слайд 4Classification of solutions

Classification of solutions

Слайд 5Solutions:
aqueous and non-aqueous
unsaturated , saturated, supersaturated
diluted, concentrated
solutions of electrolytes and

non-electrolytes
solutions of macromolecular compounds, etc.
Classification of solutions

Solutions:aqueous and non-aqueousunsaturated , saturated, supersaturateddiluted, concentratedsolutions of electrolytes and non-electrolytessolutions of macromolecular compounds, etc. Classification of

Слайд 6Mass fraction:
Dimensionless (ω = 0.15) or percentage (ω = 15%)
Mole

fraction:
Usually dimensionless
Solutions and concentration

Mass fraction:Dimensionless (ω = 0.15) or percentage (ω = 15%)Mole fraction:Usually dimensionlessSolutions and concentration

Слайд 7Amount concentration (molarity):
Mole per liter (mol/L or M);
Molality:
Mole per kg;
for diluted

solutions b[mol/kg] ≈ c[mol/L]
Solutions and concentration

Amount concentration (molarity):Mole per liter (mol/L or M);Molality:Mole per kg;for diluted solutions b[mol/kg] ≈ c[mol/L]Solutions and concentration

Слайд 8Example. Glucose (5.4 g) and sodium hydroxide (0.6 g) were

dissolved in water to give 100 ml of solution with

ρ = 1.05 g/ml. Calculate mass fractions, mole fractions and amount concentrations of all substances in the solution.

Solutions and concentration

Example. Glucose (5.4 g) and sodium hydroxide  (0.6 g) were dissolved in water to give 100

Слайд 9Degree of dissociation (concentration dependent):
CH3COOH CH3COO– +

H+
Strong electrolytes dissociate completely ( α > 30% in 0.1 M

solution; usually α ≈ 100%):

NaCl → Na+ + Cl–

Weak electrolytes dissociate only to some extent ( α ≤ 30% in 0.1 M solution; usually α < 3%):

Strong and weak electrolytes

Degree of dissociation (concentration dependent):CH3COOH    CH3COO– + H+Strong electrolytes dissociate completely ( α >

Слайд 10Strong electrolytes (α ≈ 100%)
Strong and weak electrolytes

Strong electrolytes (α ≈ 100%)Strong and weak electrolytes

Слайд 11Weak electrolytes (α < 3%)
Strong and weak electrolytes

Weak electrolytes (α < 3%)Strong and weak electrolytes

Слайд 12Semi-permeable membrane allows the solvent molecules to pass through but

holds back the solute particles:
Colligative properties: osmosis

Semi-permeable membrane allows the solvent molecules to pass through but holds back the solute particles:Colligative properties: osmosis

Слайд 13Osmotic pressure — an excess pressure required to maintain osmotic

equilibrium between a solution and the pure solvent separated by

a membrane permeable only to the solvent:

Osmolarity (cosm) — the total molar concentration of all solvated particles of the solutes in the solution:

Osmosis

Osmotic pressure — an excess pressure required to maintain osmotic equilibrium between a solution and the pure

Слайд 14Isotonic coefficient, or van't Hoff factor (i) — the number

of moles of particles (ions and/or undissociated molecules) per mole

of solute:

Osmosis

Isotonic coefficient, or van't Hoff factor (i) — the number of moles of particles (ions and/or undissociated

Слайд 15Cell membrane and osmotic pressure:
Osmosis

Cell membrane and osmotic pressure:Osmosis

Слайд 16Plasmolysis and lysis (hemolysis) of erythrocytes:
Osmosis

Plasmolysis and lysis (hemolysis) of erythrocytes:Osmosis

Слайд 17Water is a weak electrolyte:
H2O H+

+ OH–
aA + bB   cC

+ dD

H2O H+ + OH–

Kdiss (H2O)= 1.8 • 10–16 at 25 °C

ceq(X) = [X]

c(H2O) ≈ [H2O] = = 55.6 mol/L

The pH concept

Water is a weak electrolyte: H2O    H+ + OH–  aA + bB  

Слайд 18in pure water pH = pOH = 7
– lg[H+] –

lg[OH–] = – lg(1.0 • 10–14) = 14
The pH concept

in pure water pH = pOH = 7– lg[H+] – lg[OH–] = – lg(1.0 • 10–14) = 14The pH

Слайд 19– lg[H+] – lg[OH–] = – lg(1.0 • 10–14) = 14
in pure

water pH = pOH = 7
The pH concept

– lg[H+] – lg[OH–] = – lg(1.0 • 10–14) = 14in pure water pH = pOH = 7The pH

Слайд 20Strong acids:
HX → H+ + X–
H2O H+

+ OH–
[H+] > [OH–]
pH < 7
Strong bases:
MOH → M+ + OH–
H2O

H+ + OH–
[H+] < [OH–]

pH > 7

The pH concept

Strong acids:HX → H+ + X–H2O    H+ + OH–[H+] > [OH–] pH < 7Strong bases:MOH →

Слайд 21Example: The pH of 0.05 M solution of H2SO4
Example: The

pH of 0.01 M solution of NaOH
Strong acids and bases
H2SO4

 2 H+ + SO42–
pH = – lg [H+] = – lg (2·0.05) = 1

NaOH  Na+ + OH–
pOH = – lg [OH–] = – lg (0.01)= = 2
pH = 14 – pOH = 12

Example: The pH of 0.05 M solution of H2SO4Example: The pH of 0.01 M solution of NaOHStrong

Слайд 22The development of the acid-base theory
Acids and bases: different approaches

The development of the acid-base theoryAcids and bases: different approaches

Слайд 23Conjugate acid-base pairs:
Conjugate acid ⇄ H+ + conjugate base
Conjugate base

+ H+ ⇄ conjugate acid
Example: Write conjugate acids and/or bases

for the following particles: CO32–, NH3, NH4+, HS–, H2S.

Water, the most important electrolyte:

Conjugate acids and bases

Conjugate acid-base pairs:Conjugate acid ⇄ H+ + conjugate baseConjugate base + H+ ⇄ conjugate acidExample: Write conjugate

Слайд 24Acid-base equilibria in aqueous solutions
[H+] < C(HA)
[OH–] < C(B)
Weak acids

and bases

Acid-base equilibria in aqueous solutions[H+] < C(HA)[OH–] < C(B)Weak acids and bases

Слайд 25Strong acid:
HCl → H+ + Cl–
H2O H+

+ OH–
HNO2 H+ + NO2–

H2O

H+ + OH–

Weak acid:

[H+] < c (HNO2)

[H+] = c (HCl)

[H+] = [A–]; ca  [HA]

or pKa = 2pH + lgca

pH = ½[pKa – lg c(HNO2)]

pH in solutions of strong and weak acids

Strong acid:HCl → H+ + Cl–H2O    H+ + OH–HNO2    H+ +

Слайд 26Solutions of weak acids, weak bases and salts

Solutions of weak acids, weak bases and salts

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика