Разделы презентаций


Лекция 30. Скалярное поле. Поверхности и линии уровня. Градиент скалярного

Содержание

§ 1. Скалярные и векторные поля.Определение. (скалярного поля). Если в трехмерном пространстве определена функция u(x,y,z), то говорят, что задано скалярное поле u(x,y,z).Замечание. Другими словами говоря, задание скалярного поля означает, что каждой

Слайды и текст этой презентации

Слайд 1Лекция 30. Скалярное поле. Поверхности и линии уровня. Градиент скалярного

поля, Производная по направлению. Векторное поле. Векторные линии. Поток векторного

поля через поверхности, его физический смысл. Вычисление потока. Формула Остроградского. Дивергенция векторного поля.
Лекция 30. Скалярное поле. Поверхности и линии уровня. Градиент скалярного поля, Производная по направлению. Векторное поле. Векторные

Слайд 2§ 1. Скалярные и векторные поля.
Определение. (скалярного поля). Если в

трехмерном пространстве определена функция u(x,y,z), то говорят, что задано скалярное

поле u(x,y,z).
Замечание. Другими словами говоря, задание скалярного поля означает, что каждой точке M(x,y,z) поставлено в соответствие число, которое является значением функции u в точке M.
§ 1. Скалярные и векторные поля.Определение. (скалярного поля). Если в трехмерном пространстве определена функция u(x,y,z), то говорят,

Слайд 3Пример. (скалярного поля). Если в начало координат поместить заряд Q,

то в каждой точке пространства определена функция

,

где: - расстояние от точки до начала координат;  - потенциал,
0 – диэлектрическая постоянная вакуума.
Задание функции  задает скалярное поле потенциала.
Пример. (скалярного поля). Если в начало координат поместить заряд Q, то в каждой точке пространства определена функция

Слайд 4Определение. (векторного поля). Говорят, что в трехмерном пространстве задано векторное

поле

Замечание. В этом случае каждой точке пространства M(x,y,z) ставится в

соответствие вектор в точке M(x,y,z).
Для скалярных и векторных полей вводится понятие поверхностей уровня.
Определение. (поверхностей уровня). Пусть задано скалярное поле u(x,y,z). Поверхностью уровня данного скалярного поля, называется поверхность, задаваемая уравнением
u(x,y,z) = сonst.
Определение. (векторного поля). Говорят, что в трехмерном пространстве задано векторное полеЗамечание. В этом случае каждой точке пространства

Слайд 5Пример. (поверхности уровня). Если в начало координат поместить заряд Q,

то имеем скалярное поле потенциала

,

Поверхностью уровня является поверхность:


где: с = const.

- сфера

Такие поверхности называются эквипотенциальными.
Пример. (поверхности уровня). Если в начало координат поместить заряд Q, то имеем скалярное поле потенциала

Слайд 6Определение. (векторной линии). Пусть в трехмерном пространстве задано векторное поле
Векторной

линией заданного векторного поля называется линия, в каждой точке которой

вектор касательной совпадает по направлению с вектором .
Замечание. Уравнение векторных линий можно находить по формуле:
Определение. (векторной линии). Пусть в трехмерном пространстве задано векторное полеВекторной линией заданного векторного поля называется линия, в

Слайд 7Пример. Напряженность поля можно определить путем внесения пробного электрического заряда

в любую точку поля.
Векторные и скалярные поля связаны между

собой.
Пример. Напряженность поля можно определить путем внесения пробного электрического заряда в любую точку поля. Векторные и скалярные

Слайд 8§ 2. Производная по направлению.
Ее вычисление.
Пусть задано скалярное поле

u, где u – дифференцируемая функция. Возьмем в трехмерном пространстве

вектор l, расположенный в этом скалярном поле. Пусть
начало вектора l характеризует
точку М0. Возьмем на векторе l
соседнюю точку М . Точка М как
и М0 находится в скалярном поле u . Поэтому имеет смысл приращение скалярного поля u в точке М0, выраженное формулой:




§ 2. Производная по направлению. Ее вычисление.Пусть задано скалярное поле u, где u – дифференцируемая функция. Возьмем

Слайд 9Df. (производной по направлению): если существует конечный предел отношения приращения

скалярного поля

к длине вектора,

т.е. к , то этот предел называется производной скалярного поля u по направлению l и обозначается:





Df. (производной по направлению): если существует конечный предел отношения приращения скалярного поля к длине вектора,

Слайд 10Чтобы вычислить производную по направлению, пользуются теоремой:
Th.: (о вычислении производной

по направлению).
Если скалярное поле u(x,y,z) дифференцируемо в каждой точке некоторой

области V, то производная по направлению в каждой точке V существует и она выражается формулой:



Чтобы вычислить производную по направлению, пользуются теоремой:Th.: (о вычислении производной по направлению).Если скалярное поле u(x,y,z) дифференцируемо в

Слайд 11где a,b,g - углы определенные в любой точке области V

, которые составляет вектор l с координатными осями.
Док-во: т.к. скалярное

поле u дифференцируется в области V, значит, в любой окрестности точки М0 V существует приращение скалярного поля, находимого по формуле:

где a,b,g - углы определенные в любой точке области V , которые составляет вектор l с координатными

Слайд 12здесь a1,a2,a3 - бесконечно малые функции в точке М0 ,

которые стремятся к 0, когда


- это проекции вектора ,
совпадающего по направлению с вектором на
координатные оси.

- частные производные.

Разделим левую и правую части на длину вектора

После чего получаем:
здесь a1,a2,a3 - бесконечно малые функции в точке М0 , которые стремятся к 0, когда

Слайд 13Перейдем к пределу в выражении (2) при

Заметим, что

Если заменить x

на y и x на z, то в пределе получим

cos и cos.
Перейдем к пределу в выражении (2) приЗаметим, чтоЕсли заменить x на y и x на z, то

Слайд 14Значит, в пределе, учитывая, что
1, 2, 3  0 при

,

имеем:




Так как предел правой части (2) существует и выражается правой частью формулы (3), то и предел левой части формулы (3) существует. Он равен производной скалярного поля по направлению. Значит, производная скалярного поля u по направлению l выражается формулой:
Значит, в пределе, учитывая, что1, 2, 3  0 при

Слайд 15Что и требовалось доказать.
Замечание: Производная скалярного поля по направлению вектора

выражает скорость возрастания или убывания скалярного поля по направлению

вектора , если:

- поле возрастает

- поле убывает.

Вычисление скалярного поля производится по формуле (4).
Пример: на практике.
Что и требовалось доказать.Замечание: Производная скалярного поля по направлению вектора  выражает скорость возрастания или убывания скалярного

Слайд 16§ 3. Градиент скалярного поля. Связь скалярных и векторных полей.

Свойства градиента.
Определение. (градиента). Градиентом дифференцируемого скалярного поля называется вектор

.
Замечание. На практике встречаются равносильные обозначения градиента:
gradu  u,
где:  - оператор «Набла».
§ 3. Градиент скалярного поля. Связь скалярных и векторных полей. Свойства градиента.Определение. (градиента). Градиентом дифференцируемого скалярного поля

Слайд 17Определение градиента привязано к декартовой системе координат. Покажем связь скалярных

и векторных полей.
Пусть задано скалярное поле u(x,y,z), дифференцируемое в некотором

V.
-произвольный вектор V. По определению:


Но эта запись означает, что скалярному полю u c помощью grad поставлено в соответствие векторное поле grad. Что и говорит о том, что скалярное и векторное поле связаны между собой.
Определение градиента привязано к декартовой системе координат. Покажем связь скалярных и векторных полей.Пусть задано скалярное поле u(x,y,z),

Слайд 18Вспомним, что скалярное произведение 2-х векторов вычисляется по формуле:


Найдем скалярное

произведение градиента поля u и вектора , получим:



- произвольный единичный вектор V.
В правой части производная по направлению:
















Вспомним, что скалярное произведение 2-х векторов вычисляется по формуле:Найдем скалярное произведение градиента поля u и вектора

Слайд 19По этой формуле можно вычислять производную по направлению, зная градиент.
Учитывая,

что:



= проекцияlgradu =


Df. (инвариантное определение градиента, не зависящего от системы координат).
Градиентом скалярного поля u называется вектор, обозначенный gradu, проекция которого
По этой формуле можно вычислять производную по направлению, зная градиент.Учитывая, что:

Слайд 20на произвольное направление вектора равна производной скалярного

поля по направлению этого вектора .
Свойства градиента:
Градиент дифференцируемого

скалярного поля u(x,y,z) перпендикулярен к поверхности уровня этого скалярного поля (совпадает с нормалью) и направлен в сторону возрастания скалярного поля.
2. grad(c1u1 + c2u2) = c1gradu1 + c2gradu2,
c1, c2 = const;
u1, u2 – скалярные поля.
3. grad(u1u2) = u2gradu1 + u1gradu2.
на произвольное направление вектора    равна производной скалярного поля по направлению этого вектора

Слайд 21
4.

5. Если задано скалярное поле F(u(x,y,z)), то градиент:
gradF(u(x,y,z)) =

Fugradu.

§ 4. Применение градиента для вычисления нормали к поверхности.
Для поля

u(x,y,z) введем понятие градиента:



4. 5. Если задано скалярное поле F(u(x,y,z)), то градиент:gradF(u(x,y,z)) = Fugradu.§ 4. Применение градиента для вычисления нормали

Слайд 22Если имеется уравнение поверхности
u(x,y,z) = 0, это означает, что задана

поверхность уровня скалярного поля u(x,y,z).
Так как градиент скалярного поля направлен

по нормали к поверхности уровня, то единичный вектор нормали к поверхности можно найти по формуле:




Пример. На практике
Если имеется уравнение поверхностиu(x,y,z) = 0, это означает, что задана поверхность уровня скалярного поля u(x,y,z).Так как градиент

Слайд 23Поток.
§ 5. Задача, приводящая к понятию потока векторного поля.
Пусть в

трехмерном пространстве имеется ориентируемая поверхность S и векторное поле, задаваемое

формулой:


Считаем, что векторное поле в каждой точке векторного пространства задает поле скоростей жидкости. Попробуем найти количество жидкости, которое протекает через поверхность S в направлении нормали.
Поток.§ 5. Задача, приводящая к понятию потока векторного поля.Пусть в трехмерном пространстве имеется ориентируемая поверхность S и

Слайд 24Для этого возьмем в трехмерном пространстве поверхность S и разобьем

ее на маленькие кусочки S1, S2, …, Sn с площадями
S1,

S2, …, Sn. В каждом из кусочков выберем точки P1, P2, …, Pn, в которых найдем значение
скорости жидкости:


и нормали к
поверхности S:


Для этого возьмем в трехмерном пространстве поверхность S и разобьем ее на маленькие кусочки S1, S2, …,

Слайд 25 Найдем количество жидкости, которое протекает через участок

Si в единицу времени в направлении нормали.
Численно это

значение равно объему параллелепипеда, построенного на Si как на основании с высотой
Найдем количество жидкости, которое протекает через участок Si в единицу времени в направлении нормали.

Слайд 26 Если сложить объемы всех маленьких параллелепипедов, то

количество жидкости, протекающее через поверхность S, обозначаемое Q равно: При

таком приближенном вычислении количество жидкости зависит от способа разбиения и выбора точек Pi.
В физике величина не зависит. Считаем, если существует конечный предел
Если сложить объемы всех маленьких параллелепипедов, то количество жидкости, протекающее через поверхность S, обозначаемое

Слайд 27 то он и будет выражать значение количества жидкости,

протекающей через поверхность S. Вспоминая, если предел существует, то он

называется поверхностным интегралом 1-го рода.


Количество жидкости, протекающей через поверхность S равно поверхностному интегралу 1-го рода от скалярного произведения скорости на единичный вектор нормали к поверхности.
то он и будет выражать значение количества жидкости, протекающей через поверхность S. Вспоминая, если предел

Слайд 28 Для того, чтобы количественно описать векторы, электростатического, электромагнитного

поля вводится понятие потока.
Определение (потока).
Потоком векторного

поля называется число, обозначаемое буквой П и вычисляемое как:


Для того, чтобы количественно описать векторы, электростатического, электромагнитного поля вводится понятие потока.  Определение (потока).

Слайд 29 Примечание: в случае жидкости поток равен количеству жидкости,

протекающей через поверхность.

§ 6. Вычисление потока.
Если задано

векторное поле , и задана поверхность S, нормаль к которой может быть вычислена:
Примечание: в случае жидкости поток равен количеству жидкости, протекающей через поверхность. § 6. Вычисление потока.

Слайд 30 то поток через эту поверхность S может быть

вычислен по определению
При этом поверхность S должна быть однозначно

проектируемой на одну из координатных плоскостей. В этом случае поверхностный интеграл по поверхности S сводится к интегралу по области проектирования поверхности S
то поток через эту поверхность S может быть вычислен по определению   При этом

Слайд 31 Второй способ вычисления потока называется методом проектирования на

координатной плоскости. Чтобы получить формулы, заметим, что нормаль к поверхности

может быть представлена:

где - углы которые составляет нормаль с координатными осями.
Тогда, в силу определения скалярного произведения, имеем:

Второй способ вычисления потока называется методом проектирования на координатной плоскости. Чтобы получить формулы, заметим, что

Слайд 32 Поток через поверхность S равен
Пользуясь

аддитивностью интеграла

Поток через поверхность S равен     Пользуясь аддитивностью интеграла

Слайд 33 Предполагая, что поверхность S однозначно проектируется на координатные

оси имеем:


Поверхностные интегралы 2 рода вычисляются с

учетом области проектиро-вания на координатную плоскость. Для вычисления потока методом проектирования на координатные плоскости имеем
Предполагая, что поверхность S однозначно проектируется на координатные оси имеем:   Поверхностные интегралы 2

Слайд 34 Знаки  берутся с учетом того, какой угол

составляет нормаль к поверхности для 1-го интеграла с осью x,

для 2-го с осью y, для
3-го с осью z.
Замечание: В том случае если поток через замкнутую поверхность > 0, то внутри замкнутой поверхности есть источник. Если поток < 0 ,то внутри поверхности находится сток.
Если поток = 0, то говорят, что количество вещества втекающего в поверхность = кол-ву вещества вытекающего из нее.
Знаки  берутся с учетом того, какой угол составляет нормаль к поверхности для 1-го интеграла

Слайд 35 Пример: пусть дано векторное поле

найти поток через внешнюю поверхность конуса

S:
составляет тупой угол с осью z.

Пример: пусть дано векторное поле

Слайд 36Поток через всю поверхность S:




Поток через всю поверхность S:

Слайд 37§ 7. Формула Остроградского.
Пусть в трехмерном пространстве задана область V,

такая что:
Ориентированная внешней нормалью.
Имеющая кусочно-гладкую поверхность S.
В области V и

на её границе S функции P(x,y,z), Q(x,y,z), R(x,y,z) непрерывны вместе со своими частными производными
§ 7. Формула Остроградского.Пусть в трехмерном пространстве задана область V, такая что:Ориентированная внешней нормалью.Имеющая кусочно-гладкую поверхность S.В

Слайд 38Тогда справедлива формула Остроградского:





Поверхность S замкнутая.
Доказательство. Самостоятельно.
Формула Остроградского применима только

в случае замкнутых поверхностей.
Если поверхность S ориентирована внешней нормалью, в

формуле берется знак «+», если внутренней «-» перед поверхностным интегралом.
Тогда справедлива формула Остроградского:Поверхность S замкнутая.Доказательство. Самостоятельно.Формула Остроградского применима только в случае замкнутых поверхностей.Если поверхность S ориентирована

Слайд 39 § 8. Векторная запись теоремы Остроградского.

Пусть в 3-х мерном пространстве задано векторное поле
где

P, Q, R интегрируемы вместе со своими производными.
Пусть в пространстве задана замкнутая гладкая поверхность, ориентируемая внешней нормалью .
§ 8. Векторная запись теоремы Остроградского.     Пусть в 3-х мерном пространстве задано

Слайд 40Так как S - замкнутая, гладкая, ориентированная, а функции P,

Q, R удовлетворяют условиям теоремы Остроградского, имеем:
Поток через поверхность
S можно

вычислить по формуле:
Так как S - замкнутая, гладкая, ориентированная, а функции P, Q, R удовлетворяют условиям теоремы Остроградского, имеем:Поток

Слайд 41
Сравнивая правые части формул (1) и

(2) и

вспоминая что
имеем: - векторная запись теоремы

Остроградского.
Поток векторного поля через замкнутую поверхность = по объему от этой поверхности, от дивергенции векторного поля.
Сравнивая правые части формул (1) и (2) и  вспоминая что  имеем:

Слайд 42Пример:
Поток векторного поля через поверхность

неизвестен.
S:

нормаль внешняя S - замкнутая поверхность – это боковые поверхности конуса и плоскость z = 2.
Найдем заранее:
Пример:    Поток векторного поля через поверхность неизвестен.  S:

Слайд 43Замечание: из материала, приведенного выше ясно, что скалярным полям можно

поставить в соответствие векторные поля, а векторным- скалярные. Если дано

скалярное поле U(x,y,z) то с помощью операций gradU скалярному полю можно ставить в соответствие векторное поле. Если есть векторное поле , то с помощью div можно поставить в соответствие векторному полю скалярное поле.
Замечание: из материала, приведенного выше ясно, что скалярным полям можно поставить в соответствие векторные поля, а векторным-

Слайд 44§ 9. Дивергенция векторного поля, ее вычисление.
В векторном поле

возьмем замкнутую поверхность S с внешней нормалью .

Можем получить характеристику поля, называемую потоком, воспользовавшись формулой:


Если взять поверхность S1, то поток будет другим, чем через поверхность S, и понятие потока отражает количественную характеристику векторного поля при наличии некоторой поверхности, и зависит не только от векторного поля но и от поверхности.
§ 9. Дивергенция векторного поля, ее вычисление.В векторном поле   возьмем замкнутую поверхность S с внешней

Слайд 45




В некоторых задачах необходимо знать характеристики

векторного поля в каждой точке, независимо от выбора поверхности S.

Если разделить поток на объем поверхности:

-

средняя плотность потока через поверхность S.
В некоторых задачах необходимо знать характеристики векторного поля в каждой точке, независимо от выбора

Слайд 46 Если поверхность S стягивать в точку и предполагать

что существует предел такого отношения, то получим плотность потока в

точке.
Эту характеристику по определению называют дивергенцией векторного поля.

Определение. (дивергенции) Если существует конечный предел отношения потока векторного поля через замкнутую поверхность S к V,
Если поверхность S стягивать в точку и предполагать что существует предел такого отношения, то получим

Слайд 47 содержащемся внутри этой поверхности, при стягивании поверхности S

в точку, этот предел называется дивергенцией векторного поля в точке

и обозначается: Физический смысл дивергенции - плотность потока векторного поля.
Если div > 0, то в точке - источник,
если < 0, то сток,
если = 0, то ничего не находится

содержащемся внутри этой поверхности, при стягивании поверхности S в точку, этот предел называется дивергенцией векторного

Слайд 48 Теорема. (о вычислении дивергенции)
Если в 3-х

мерном пространстве задано
векторное поле

где P, Q,

R непрерывны вместе со своими производными


в некоторой области V, то в каждой точке этой области дивергенция может быть вычислена по формуле
Теорема. (о вычислении дивергенции)  Если в 3-х мерном пространстве задано  векторное поле

Слайд 49Доказательство:

По определению:

Так как поверхность S замкнутая,

то применяя формулу Остроградского имеем:

Доказательство:  По определению:   Так как поверхность S замкнутая, то применяя формулу Остроградского имеем:

Слайд 50 Значит, дивергенция поля может быть записана

Частные

производные непрерывны, значит к тройному интегралу применима теорема о среднем.

Значит, дивергенция поля может быть записана   Частные производные непрерывны, значит к тройному интегралу

Слайд 51 Частные производные непрерывны, необходимо учитывать, что поверхность S

стягивается в точку M, можно записать, что

и перейти к пределу под знаком непрерывной функции, после чего получим:

Частные производные непрерывны, необходимо учитывать, что поверхность S стягивается в точку M, можно записать, что

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика