Разделы презентаций


Лекция 4 Настройка лазерного сканирующего конфокального микроскопа

Содержание

Эквивалентный размер пиксела – размер пиксела камеры при проекции его в пространство предметов. Эквивалентный размер пиксела равен физическому размеру пиксела матрицы камеры, деленному на общее увеличение, создаваемое микроскопом на матрице камеры.

Слайды и текст этой презентации

Слайд 1Лекция 4
Настройка лазерного сканирующего конфокального микроскопа

Лекция 4Настройка лазерного сканирующего конфокального микроскопа

Слайд 2Эквивалентный размер пиксела – размер пиксела камеры при проекции его

в пространство предметов.
Эквивалентный размер пиксела равен физическому размеру пиксела

матрицы камеры, деленному на общее увеличение, создаваемое микроскопом на матрице камеры. Соответственно, он уменьшается с ростом увеличения объектива.
Пример: для объектива х60 и пиксела камеры 6,45 мкм эквивалентный размер пиксела составляет 107,5 нм.
Для микроскопов, скорректированных на бесконечность и имеющих специальный порт для присоединения камеры, общее увеличение определяется объективом и проекционной линзой, устанавливаемой перед камерой. Как правило, проекционная линза имеет коэффициент х1.

Эквивалентный размер пиксела

Эквивалентный размер пиксела – размер пиксела камеры при проекции его в пространство предметов. Эквивалентный размер пиксела равен

Слайд 3Увеличение объектива только примерно равно указанному на оправе. Точное увеличение

может отличаться на 2-3% от паспортного.
Определение эквивалентного размера пиксела

проводится эмпирически на каждом микроскопе с помощью съемки объект-микрометра.
Цена деления объект-микрометра – 10 мкм (малое деление).
Пример для малого увеличения (справа) – эквивалентный размер пиксела составляет 18,18 мкм.

Определение эквивалентного размера пиксела

Увеличение объектива только примерно равно указанному на оправе. Точное увеличение может отличаться на 2-3% от паспортного. Определение

Слайд 4Уменьшение эквивалентного размера пиксела приводит к уменьшению количества света, попадающего

на него, что аналогично эффекту уменьшения чувствительности камеры. Поэтому уровень

пикселизации во флуоресцентной микроскопии, составляет около 1/3-2/5 радиуса диска Эри, но меньший эквивалентный размер пиксела позволяет сохранить больший контраст.
В практической флуоресцентной микроскопии эквивалентный размер пиксела рассчитывается исходя из требований светочувствительности. Компромисс обычно достигается при эквивалентном размере пиксела около 35-40% от разрешающей способности объектива, однако для ярких препаратов его целесообразно уменьшить до 25-30%.
Для эффективной цифровой обработки светлопольных изображений эквивалентный размер пиксела должен быть не более ¼ разрешающей способности объектива микроскопа.

Условия оптимальной записи изображения в микроскопе

Уменьшение эквивалентного размера пиксела приводит к уменьшению количества света, попадающего на него, что аналогично эффекту уменьшения чувствительности

Слайд 5Для однозначного восстановления (передачи) непрерывного периодического сигнала с помощью дискретной

(цифровой) записи частота измерения величины сигнала (частота дискретизации) должна быть

по крайней мере в 2 раза больше самой высокой частоты из спектра исходного сигнала, которую надо передать.

Пример: для передачи звука в цифровых устройствах используется частота дискретизации 44 кГц, поскольку максимальная частота звука, воспринимаемого человеком, составляет 20 кГц.

Теорема дискретизации (Sampling theorem)

Для однозначного восстановления (передачи) непрерывного периодического сигнала с помощью дискретной (цифровой) записи частота измерения величины сигнала (частота

Слайд 6Теорема гласит, что для записи изображения без существенной потери информации

эквивалентный размер пиксела должен быть по крайней мере в 2

раза меньше разрешающей способности микроскопа (радиуса диска Эри или 0,5/NA).
Например, если радиус диска Эри для микроскопа с иммерсионным объективом х60/1,4 составляет 0,24 мкм, то размер пиксела при записи должен быть не более 0,12 (0,1) мкм.
На самом деле для сохранения полной информации размер пиксела должен быть существенно меньше указанного выше, так как диск Эри не описывается синусоидой, а матрица камеры является двумерной.

Теорема дискретизации в микроскопии

Теорема гласит, что для записи изображения без существенной потери информации эквивалентный размер пиксела должен быть по крайней

Слайд 7Контраст дискретного изображения всегда меньше, чем непрерывного. Основной вопрос –

насколько? Так как научная камера позволяет записать больше оттенков серого,

чем различает глаз, то при «восстановлении» изображения контраст может быть увеличен.
При достаточно малых эквивалентных размерах пиксела (около 1/10 радиуса диска Эри) записанное изображение является хорошим приближением оригинала, то есть контраст его мало отличается от исходного.
При размерах пиксела свыше ¼ но менее ½ радиуса диска Эри контраст изображения становится переменной величиной. Он зависит от относительного расположения элементов изображения и элементов матрицы камеры.
При размерах пиксела больше ½ разрешающей способности прибора, разрешающая способность цифровой системы существенно снижается и ограничивается исключительно величиной пиксела.

Ограничения дискретного изображения

Контраст дискретного изображения всегда меньше, чем непрерывного. Основной вопрос – насколько? Так как научная камера позволяет записать

Слайд 8Недостаточная пикселизация изображения
Максимальный эквивалентный размер пиксела, диктуемый телеграфной теоремой (1/2

радиуса диска Эри), в случае, когда объекты разделены минимальным промежутком,

приводит к значительному снижению контраста при «удачной» пикселизации, и полной потере контраста при «неудачной» пикселизации.
Недостаточная пикселизация изображенияМаксимальный эквивалентный размер пиксела, диктуемый телеграфной теоремой (1/2 радиуса диска Эри), в случае, когда объекты

Слайд 9Пикселизация изображения
Исходя из критерия Рэлея, для сохранения положительного контраста при

произвольном расположении точек в объекте, максимальный эквивалентный размер пиксела должен

составлять менее 1/3.2 радиуса диска Эри. Тогда за счет увеличения контраста при съемке (12-16 разрядный АЦП) сохраняется возможность разрешения любых близко расположенных объектов.
При размере пиксела равном 1/5 радиуса диска Эри, контраст цифрового изображения снижается не более, чем в 1,5 раза.
Пикселизация изображенияИсходя из критерия Рэлея, для сохранения положительного контраста при произвольном расположении точек в объекте, максимальный эквивалентный

Слайд 10Съемка с максимальным разрешением
В большинстве микроскопов использование камеры со стандартной

установкой (то есть без промежуточного увеличения) не позволяет достичь максимального

разрешения при использовании объективов с относительно небольшим увеличением и большой апертурой (40/1.3; 20/0.8 и др.) из-за слишком большого эквивалентного размера пиксела.
Для достижения максимального разрешения (уменьшения эквивалентного размера пиксела) в этих случаях следует использовать объектив х100 и/или систему промежуточного увеличения изображения (имеется только на небольшом числе современных микроскопов – Nikon TiE, Zeiss в специальной комплектации).
Съемка с максимальным разрешениемВ большинстве микроскопов использование камеры со стандартной установкой (то есть без промежуточного увеличения) не

Слайд 11Максимально допустимый размер пиксела камеры для некоторых объективов при прямой

съемке
х100/1.3 (имм.) – 10 мкм
х60/1.4 (имм.) – 5,6 мкм
х40/1.4

(имм.) – 3,7 мкм
х40/0.75 – 6,9 мкм
х20/0.8 – 3,3 мкм
х20/0.5 – 5,2 мкм
х10/0.3 – 4,3 мкм
Максимально допустимый размер пиксела камеры для некоторых объективов при прямой съемкех100/1.3 (имм.) – 10 мкмх60/1.4 (имм.) –

Слайд 12Теорема дискретизации для конфокальной микроскопии
i) Предел разрешения:

0.4 x wavelength/NA = Resolvable Distance

ii) Теорема дискретизации

(одномерный случай): 2 pixels is smallest optically resolvable distance

iii) Расчет пиксела: Resolvable Distance/2 = smallest resolvable point
Теорема дискретизации для конфокальной микроскопииi)  Предел разрешения:    0.4 x wavelength/NA = Resolvable Distanceii)

Слайд 13Минимальная дискретизация (Nyquist sampling)
Пример:

Объектив 100x, 1.40 NA, 530 nm (ФИТЦ)
Теоретическое

разрешение = 0.15 мкм
Максимальный размер шага сканирования - менее 0.1

мкм (примерно 80 нм).

Поле зрения объектива – 220 мкм. Доступно для сканирования – 150*150 мкм
При формате 512x512 пикселы будут слишком большими

Что делать?
Использовать большее число пикселов (1024x1024; 2048x2048) или растягивать изображение (zoom).
Минимальная дискретизация (Nyquist sampling)Пример:Объектив 100x, 1.40 NA, 530 nm (ФИТЦ)Теоретическое разрешение = 0.15 мкмМаксимальный размер шага сканирования

Слайд 14Растяжение (zooming)
Масштабирование означает, что вы используете тот же растр (число

шагов), скорость сканирования и освещение для записи изображения с меньшей

площади (уменьшаете шаг сканирования).
Во многих случаях для достижения правильного шага необходимо растяжение (zoom) в 2 и более раз.
Соответственно, световая нагрузка на препарат возрастает с уменьшением шага сканирования (пропорционально плотности шагов на единицу площади). Это влечет за собой нежелательные эффекты – выцветание, фототоксичность (для живых клеток).
Растяжение (zooming)Масштабирование означает, что вы используете тот же растр (число шагов), скорость сканирования и освещение для записи

Слайд 15Пример минимального расчета
Объектив X10 с апертурой 0.3 для изображения GFP:
(0.4

x 520)/0.3 = 693nm (разрешение)
693/2 = 346.6nm (допустимый

размер пиксела)

Область сканирования = 1500µm; Box Size = 1024 pixels
Шаг: 1500/1024 = 1464nm, что больше допустимого размера
Для данного формата сканирования:
1464/346.6 = 4.2 – фактор растяжения (zoom)

Другой вариант - сканировать все поле в формате 4096х4096 (размер пиксела составит 366 нм, что примерно соответствует расчетам - 346.6 нм)
Пример минимального расчетаОбъектив X10 с апертурой 0.3 для изображения GFP:(0.4 x 520)/0.3 = 693nm (разрешение)  693/2

Слайд 16Скорость сканирования: разрешение по времени
В современных микроскопах скорость измеряется в

герцах и составляет от 1000 до 4000 Гц. Скоростные (резонансные)

сканеры позволяют достичь частоты сканирования около 10 кГц.

Снижение скорости сканирования приводит к тому, что:
- собирается больше света (возрастает время экспозиции в точке)
- увеличивается фотообесцвечивание и фототоксичность
- ограничивается пространственное разрешение

Увеличение скорости сканирования дает противоположные эффекты, но снижает отношение сигнал/шум
Скорость сканирования: разрешение по времениВ современных микроскопах скорость измеряется в герцах и составляет от 1000 до 4000

Слайд 17Дискретизация по оси z
Каково необходимое расстояние по оси z

?
Оптимум – менее половины от аксиального разрешения.
Для объективов с большой

NA рекомендуемые шаги составляют около 0.3 мкм, но для точной реконструкции желательно иметь шаги 0.1-0.2 мкм (особенно, при закрытой конфокальной диафрагме).
На практике такие шаги приводят к очень большим объемам файлов. Если реконструкции не требуется, то шаг в 0,5-1 мкм обычно достаточен (особенно, если диафрагма открыта свыше 1 диска Эри).

x

y

z

Дискретизация по оси z Каково необходимое расстояние по оси z ?Оптимум – менее половины от аксиального разрешения.Для

Слайд 18Недостаточная и избыточная дискретизация
Избыточная дискретизация (пикселы маленькие по сравнению с

оптическим разрешением):
Изображение «гладкое» и хорошо выдерживает различные преобразования
Препарат избыточно экспонирован
Уменьшена

площадь сканирования
Большой объем файла

Недостаточная дискретизация (пикселы велики по сравнению с оптическим разрешением):
Страдает пространственное разрешение
Уменьшаются эффекты засветки (выцветание)
В изображении появляются артефакты (пятна, нарушение элементов - aliasing)

Примечание: если приходится записывать изображение с недостаточной дискретизацией, то лучше открывать диафрагму!

Недостаточная и избыточная дискретизацияИзбыточная дискретизация (пикселы маленькие по сравнению с оптическим разрешением):	Изображение «гладкое» и хорошо выдерживает различные

Слайд 191 проход
16 проходов
PlanApo 63x
Лазер 488 нм 80%
ФЭУ - 800

В
Среднее
усиление
Большое
усиление
Лазер 488 нм 10%
ФЭУ - 1000 В

1 проход16 проходовPlanApo 63x Лазер 488 нм 80%ФЭУ - 800 ВСреднее усилениеБольшое усилениеЛазер 488 нм 10%ФЭУ -

Слайд 20Шум в цифровом изображении
Определение: шум это любая неоднородность в

измерениях, которая не связана с изменением входного сигнала.
Шум определяет предел

чувствительности аппаратуры ( то есть способность записывать минимальные изменения)
Максимальная величина сигнала ограничивается возможностями аппаратуры (ток насыщения).
Отношение S/N определяет динамический диапазон измерителя

Источники шума:
Дробовый шум (вариации в числе фотонов)
Электронный шум - вариации в напряжении в ФЭУ и в усилителе сигнала. Он возрастает с ростом напряжения.

Чтобы уменьшить шум, надо собрать больше фотонов, для чего следует увеличить время сканирования или открыть диафрагму.

Усреднение кадров (для фиксированных препаратов):
Отношение S/N растет пропорционально квадратному корню из числа кадров.

Шум в цифровом изображении Определение: шум это любая неоднородность в измерениях, которая не связана с изменением входного

Слайд 21В идеально работающем детекторе при однородном естественном фоне отношение сигнал/шум

(S/N или SNR) может быть рассчитано по формуле:
{SNR} = PQet

/ [PQet + Dt + Nr2]1/2
где P - поток фотонов (фотонов/пиксел/секунду), Qe - квантовый выход детектора, t - время записи (секунд), D - темновой ток (электронов/пиксел/секунду), и Nr - шум считывания (электронов/пиксел).
В «идеальном» ФЭУ формула упрощается:
{SNR} = PQet 1/2
Отношение сигнал/шум не может быть увеличено в результате цифровой обработки отдельного изображения и убывает при всех операциях с кадрами (сложение, вычитание, деление).

Сигнал и шум

В идеально работающем детекторе при однородном естественном фоне отношение сигнал/шум (S/N или SNR) может быть рассчитано по

Слайд 22Зависимость отношения сигнал/шум от экспозиции
Одно и то же поле записано

с выдержками 1,12 и 4,48 мксек.
Различия в отношении сигнал/шум составляют

6 Дб.
Зависимость отношения сигнал/шум от экспозицииОдно и то же поле записано с выдержками 1,12 и 4,48 мксек.Различия в

Слайд 23Фотоэлектронный умножитель получает свет через стеклянное или кварцевое окно, покрытое

фоточувствительной поверхностью – фотокатодом, который испускает электроны, а они в

свою очередь умножаются в специальных электродах, называемых диноды. Работа динода основана на эффекте вторичной электронной эмиссии — явления, когда первичный электрон, попадая на динод, выбивает несколько электронов (называемых вторичными). Сколько в среднем появляется вторичных электронов, зависит и от энергии первичного электрона и от материала динода. Эта величина называется коэффициентом вторичной эмиссии δ и обычно для современных ФЭУ лежит в пределах от 3 до 10. Чтобы вылетевший из фотокатода фотоэлектрон пришел на 1-ый динод, имея достаточную энергию, потенциал динода должен быть на несколько десятков или сотен вольт более положительным. Аналогично, чтобы появившиеся с 1-ого динода примерно δ вторичных электронов достигли следующего 2-ого динода, обладая достаточной энергией, потенциал 2-ого динода также должен превышать потенциал 1-ого на 100–200 В. Очень важно при этом, чтобы все вторичные электроны попали именно на динод, а не на стойки электродов и стекло колбы. В конце динодной системы находится анод или собирательный электрод. Как правило, ток, идущий через анод пропорционален фототоку, генерируемому фотокатодом. Выводы от всех электродов ФЭУ осуществлены через основание колбы, заделанной в пластмассовый цоколь.
Фотоэлектронный умножитель получает свет через стеклянное или кварцевое окно, покрытое фоточувствительной поверхностью – фотокатодом, который испускает электроны,

Слайд 24Детектор сигналов – ФЭУ
Фотоэлектронный умножитель (ФЭУ) – вакуумный прибор.

Фотоэлектронный умножитель (ФЭУ) представляет собой электровакуумный прибор, в котором поток

электронов, эмитируемый фотокатодом под действием оптического излучения, усиливается в умножительной системе в результате вторичной электронной эмиссии. Квантовый выход (фотокатода) составляет не более 10-30%. Максимальная чувствительность – как правило, в синей области спектра (450 нм). ФЭУ с увеличенной полосой чувствительности в красной и ИК области имеют более низкий квантовый выход (менее 10%). Новейшие ФЭУ (на основе арсенида галлия) имеют квантовый выход до 40%.
Коэффициент усиления фототока – до 106.
Детектор сигналов – ФЭУ Фотоэлектронный умножитель (ФЭУ) – вакуумный прибор. Фотоэлектронный умножитель (ФЭУ) представляет собой электровакуумный прибор,

Слайд 25Кривая светочувствительности ФЭУ
Современные ФЭУ имеют удовлетворительную чувствительность в диапазоне 500-650

нм, но быстро теряют ее в ближнем инфракрасном свете

Кривая светочувствительности ФЭУСовременные ФЭУ имеют удовлетворительную чувствительность в диапазоне 500-650 нм, но быстро теряют ее в ближнем

Слайд 26ФЭУ на арсениде галлия (GaAsP)
Максимальная чувствительность детектора GaAsP в диапазоне

450-650 нм достигает 45%, в три-пять раз превышая чувствительность стандартного

ФЭУ.
ФЭУ на арсениде галлия (GaAsP)Максимальная чувствительность детектора GaAsP в диапазоне 450-650 нм достигает 45%, в три-пять раз

Слайд 27Настройка ФЭУ
Настройка ФЭУ состоит в подборе усиления и пьедестального напряжения.

(а) исходный сигнал; (b) после вычитания фона (offset); (c) после

растяжения выходного сигнала (gain)
Настройка ФЭУНастройка ФЭУ состоит в подборе усиления и пьедестального напряжения. (а) исходный сигнал; (b) после вычитания фона

Слайд 28Факторы, определяющие качество изображения
Пространственное разрешение
Определяется оптикой, но может ухудшаться при

недостаточной плотности сканирования. Возможность получения максимального разрешения зависит от диафрагмы.


Глубина изображения (разрешение по уровням серого)
Определяется детектором, но может ограничиваться малым потоком фотонов и неправильной настройкой ФЭУ.
Отношение сигнал/шум
Определяется ФЭУ, мощностью лазера, экспозицией и автофлуоресценцией. Часто ограничивается жизнеспособностью клеток.
Разрешение по времени
Зависит от скорости сканирования и размера растра (512x512; 1024х1024 и т.д.).

Реальная картина всегда представляет собой компромисс между вышеперечисленными условиями.

Факторы, определяющие качество изображенияПространственное разрешение	Определяется оптикой, но может ухудшаться при недостаточной плотности сканирования. Возможность получения максимального разрешения

Слайд 29Критические параметры ЛСКМ
Настройка лазера (мощность)
Апертура и увеличение объектива
Размер пиксела (шага)

при сканировании и размер растра (например, 1024х1024)
Толщина покровного стекла
Показатель преломления

препарата и его гомогенность
Размер конфокальной диафрагмы
Настройки детектора (ФЭУ) – gain (усиление), offset (порог)
Оцифровка сигнала на компьютере (16 бит)
Критические параметры ЛСКМНастройка лазера (мощность)Апертура и увеличение объективаРазмер пиксела (шага) при сканировании и размер растра (например, 1024х1024)Толщина

Слайд 30Конфокальные компромиссы

Конфокальные компромиссы

Слайд 31Перекрывание спектров эмиссии
Перекрывание спектров эмиссии неизбежно при использовании нескольких красителей,

возбуждаемых от одного лазера (при одной длине волны). Оно приводит

к тому, что при одновременной окраске клетки несколькими красителями измеряемый каждым ФЭУ сигнал увеличивается за счет дополнительного сигнала от других красителей возбуждаемых тем же лазером.
Перекрывание для органических красителей асимметрично – коротковолновые красители дают большее «затекание» в следующий канал. Величина перекрывания возрастает по мере сближения максимумов флуоресценции и максимумов возбуждения.
Перекрывание спектров эмиссииПерекрывание спектров эмиссии неизбежно при использовании нескольких красителей, возбуждаемых от одного лазера (при одной длине

Слайд 32Компенсация
При использовании нескольких красителей возникает проблема перекрывания спектров флуоресценции. Проблема

усугубляется с ростом числа красителей.
Для того, чтобы определить, является ли

сигнал истинным, или обусловлен затеканием эмиссии из другого канала, применяется специальная процедура под названием «компенсация».
Компенсация в первом приближении означает вычитание одного сигнала, умноженного на некоторый коэффициент (как правило, от 1 до 100%) из другого.
Цифровая компенсация производится с помощью заранее подготовленной таблицы, которая расcчитывается на основании перекрывания спектров (при использовании лазеров), или вручную, эмпирически подбирая коэффициенты.
КомпенсацияПри использовании нескольких красителей возникает проблема перекрывания спектров флуоресценции. Проблема усугубляется с ростом числа красителей.Для того, чтобы

Слайд 33Сравнение пар красителей
FITC
TRITC ~20%
FITC
Texas Red ~3%

Сравнение пар красителейFITCTRITC ~20%FITCTexas Red ~3%

Слайд 34Затекание сигналов

Затекание сигналов

Слайд 35Затекание сигналов
Как уменьшить затекание сигналов:

Использовать флуорохромы с дальше отстоящими спектрами.

Например, FITC + Texas Red лучше, чем FITC + TRITC

Более

слабый сигнал желательно пометить коротковолновым флуорохромом.

Последовательное, а не одновременное сканирование.

Как проверить наличие затекания:

Выключить возбуждение для длинноволнового красителя

Затекание сигналовКак уменьшить затекание сигналов:Использовать флуорохромы с дальше отстоящими спектрами. Например, FITC + Texas Red лучше, чем

Слайд 36Запись изображения в нескольких каналах
Варианты записи:
одновременно (хуже) или последовательно

(лучше, но дольше).
Основная трудность – возможность перекрывания сигналов в

разных каналах детекции.
Запись изображения в нескольких каналахВарианты записи: одновременно (хуже) или последовательно (лучше, но дольше). Основная трудность – возможность

Слайд 37Разделение перекрывающихся сигналов
Для уменьшения эффекта затекания применяются несколько подходов:
Сдвиг полосы

пропускания детектора.
Использование дифракционной решетки для выделения узкой полосы сигнала.


Последовательное сканирование.

Разделение спектров проводится с помощью базы данных микроскопа.
Разделение перекрывающихся сигналовДля уменьшения эффекта затекания применяются несколько подходов:Сдвиг полосы пропускания детектора. Использование дифракционной решетки для выделения

Слайд 38Параллельное и последовательное сканирование
Слева: красный и зеленый каналы перекрываются, справа

– каналы полностью разделены.

Параллельное и последовательное сканированиеСлева: красный и зеленый каналы перекрываются, справа – каналы полностью разделены.

Слайд 39Последовательное сканирование
Спектры флуоресценции снимаются последовательно при возбуждении разными лазерами.

Последовательное сканированиеСпектры флуоресценции снимаются последовательно при возбуждении разными лазерами.

Слайд 40Запись спектров с помощью щелевого детектора

Запись спектров с помощью щелевого детектора

Слайд 41Анализ спектров
Спектры анализируются для каждой точки изображения и сравниваются со

спектрами из библиотеки (записанной в программе).

Анализ спектровСпектры анализируются для каждой точки изображения и сравниваются со спектрами из библиотеки (записанной в программе).

Слайд 42Запись спектров с помощью щелевого детектора
Ширина и положение щели перед

детектором регулируются – таким образом возможно сканирование спектра флуоресценции.

Запись спектров с помощью щелевого детектораШирина и положение щели перед детектором регулируются – таким образом возможно сканирование

Слайд 43Результаты разделения
Слева – суммарная картина, справа – после вычитания спектра

автофлуоресценции. Сохранен сигнал только от GFP.

Результаты разделенияСлева – суммарная картина, справа – после вычитания спектра автофлуоресценции. Сохранен сигнал только от GFP.

Слайд 44Системы спектральной детекции
Слева – последовательная (за счет поворота решетки), справа

– параллельная (панель с 32 детекторами предустановлена перед решеткой).

Системы спектральной детекцииСлева – последовательная (за счет поворота решетки), справа – параллельная (панель с 32 детекторами предустановлена

Слайд 45Спектральный детектор Никон
32-канальный детектор с регулируемой шириной щели – 2.5,

6 и 10 нм на канал. Возбуждение препарата возможно одновременно

от всех 4 лазеров.
Спектральный детектор Никон32-канальный детектор с регулируемой шириной щели – 2.5, 6 и 10 нм на канал. Возбуждение

Слайд 46Спектральный детектор
Линейка из ФЭУ позволяет одновременно записывать сигнал в 32

каналах для последовательных длин волн (ширина канала устанавливается на 2,5,

5-6 или 10 нм)
Спектральный детекторЛинейка из ФЭУ позволяет одновременно записывать сигнал в 32 каналах для последовательных длин волн (ширина канала

Слайд 47Спектральный детектор
Галерея из 32 картинок препарата, окрашенного DAPI и Alexa

488
Регулируемый детектор позволяет выделять несколько каналов для одновременной записи

Спектральный детекторГалерея из 32 картинок препарата, окрашенного DAPI и Alexa 488Регулируемый детектор позволяет выделять несколько каналов для

Слайд 48Лямбда стек (Lambda stack)


Лямбда стек или спектральный куб – набор

изображений, записанных при различных длинах волн. Он позволяет проследить за

интенсивностью флуоресценции в каждом пикселе изображения в зависимости от длины волны.
Лямбда стек (Lambda stack)  Лямбда стек или спектральный куб – набор изображений, записанных при различных длинах

Слайд 49Запись стека для трех белков

Запись стека для трех белков

Слайд 50Возможности спектрального детектора
Быстрая запись изображения в 32 каналах.
Возможность разделения перекрывающихся

спектров (spectral unmixing). Разделение спектров проводится по базе данных.
Регулировки спектрального

детектора:
- изменение ширины (2, 5 или 10 нм на канал) – достигается заменой решетки
- сдвиг всей рамки (500-820 нм) – производится поворотом решетки
- объединение изображений с нескольких каналов.
Возможности спектрального детектораБыстрая запись изображения в 32 каналах.Возможность разделения перекрывающихся спектров (spectral unmixing). Разделение спектров проводится по

Слайд 51Разделение спектров
Можно разделить спектры, максимумы которых отстоят не менее, чем

на 6-10 нм при условии, что красители пространственно разделены (хотя

бы частично). Для разделения близких спектров необходимо использовать минимальную ширину щели детектора (2-2,5 нм).
Разделение спектровМожно разделить спектры, максимумы которых отстоят не менее, чем на 6-10 нм при условии, что красители

Слайд 52Разделение спектров - стек

Разделение спектров - стек

Слайд 53Разделение спектров - результат

Разделение спектров - результат

Слайд 54Виртуальный фильтр на базе 32-канального детектора
Выбирая каналы на детекторе, можно

получить до четырех различных флуоресцентных сигналов. Чувствительность регулируется числом каналов,

сигналы от которых объединяются.
Виртуальный фильтр на базе 32-канального детектораВыбирая каналы на детекторе, можно получить до четырех различных флуоресцентных сигналов. Чувствительность

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать его на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: Нажмите что бы посмотреть 

Что такое TheSlide.ru?

Это сайт презентации, докладов, проектов в PowerPoint. Здесь удобно  хранить и делиться своими презентациями с другими пользователями.


Для правообладателей

Яндекс.Метрика