Слайд 1Лекция по медицинской статистике
Зав. кафедрой ОЗиЗ
К.м.н. Шульмин А. В.
Цель лекции:
ознакомление с историей развития и основными составляющими медицинской статистики
Слайд 2План лекции:
История развития и становления медицинской статистики как науки.
Определение понятия
медицинская статистика и ее роли в деятельности руководителей медицинских организаций.
Этапы
статистического исследования.
Абсолютные величины и коэффициенты соотношения.
Средние величины.
Основные подходы к доказательной медицине.
Оценка статистических величин в динамике
Слайд 3Френк Йейтс (1937)
«Большинству биологических объектов свойственна вариабельность, и прелесть
простоты и воспроизводимости физических и химических экспериментов утрачивается. А значит,
на передний план выдвигаются статистические проблемы»
Слайд 4Предшественницей статистики была политическая арифметика, основоположником, которой стал Вильям Петти
(1623—1687) — врач, доктор физики, профессор астрономии, изобретатель копировальной машины,
один из создателей Лондонского Королевского общества.
Слайд 5Яков Бернулли (1654-1705)
Бернуллиевская модель (по имени Якоба Бернулли (1654–1705)
– выдающегося швейцарского математика), является подходящей математической моделью для любого
эксперимента с двумя исходами ("успех" - "неуспех"), т.е. простейшего статистического эксперимента.
Слайд 6Термин “статистика” в его современном значении впервые употребил немецкий ученый
Готфрид Ахенваль (1719—1772). В Германии XVII века было распространено словосочетание
“disciplina statistica” — “статистическая дисциплина”. Превратив прилагательное в существительное, Г. Ахенваль ввел в оборот слово “Statistica”, означавшее сумму знаний, необходимых купцам, политикам, военным и всем культурным людям , которое трактовалось, как «государствоведение».
Слайд 7Позднее, его ученик, Джон Граунт, провел исследование закономерностей рождаемости и
смертности в Лондоне. В период эпидемии чумы в начале XVI
века в Лондоне составлялись еженедельные бюллетени — списки умерших и родившихся с классификацией по полу и причинам смерти. Изучив бюллетени за истекшие 33 года и отобрав 229 250 случаев смерти с достоверными данными о ее причинах, Д. Граунт смог построить первую таблицу дожития и первую кривую смертности.
Слайд 8Лаплас (Laplace) Пьер Симон (1749-1827).
Однажды Лапласу задали вопрос, зачем
он предлагал допустить в Академию наук медиков, зная, что медицина
не наука? "Затем", отвечал он, "чтобы они обращались с учеными"
Слайд 9Вот как описывает К. Бернар в своей книге “Введение к
изучению опытной медицины” отношение к этому во французской Академии наук:
“Коротко говоря, экспериментальная медицина, — синоним научной медицины, — может сложиться только с постепенным распространением научного духа между медиками. ...
Слайд 10Основателем теории статистики по праву считается бельгийский статистик и антрополог
Адольф Кетле (1796—1874). Действительный член Бельгийской академии наук и член-корреспондент
Петербургской академии наук, он являлся непосредственным организатором международных статистических конгрессов, сыгравших огромную роль в становлении теоретической и практической статистики.
Слайд 11
А. Кетле, определял статистику, как науку, изучающую государство: «Статистика изучает
государство в определенную эпоху; она собирает элементы, связанные с жизнью
этого государства, старается сделать их сравнимыми и комбинирует их наилучшим образом, чтобы познать все то, что они могут нам открыть»
Слайд 12Фрэнсис Гальтон (1822—1911). Первоначально он готовился стать врачом, однако обучаясь
в Кембриджском университете, увлекся естествознанием, метеорологией, антропологией, теорией наследственности и
эволюции. В книге (1889), посвященной теории наследственности, Ф. Гальтон впервые ввел в употребление термин “biometry”; в это же время им были разработаны основы корреляционного анализа.
Слайд 13Карл Пирсон (1857—1936) продолжил работу Ф. Гальтона и превратил биометрию
в стройную научную дисциплину В 1984 г. он возглавил кафедру
прикладной математики в Лондонском университете. Большую роль в жизни К. Пирсона сыграл зоолог Ф. Велдон. Помогая ему в анализе полученных данных, К. Пирсон ввел в 1893 г. понятия среднего квадратического отклонения и коэффициента вариации, а пытаясь математически оформить теорию наследственности Ф. Гальтона в 1898 г., приступил к созданию основ метода множественной регрессии. В 1903 г. К. Пирсон разработал основы теории сопряженности признаков, а в 1905 г. опубликовал основы нелинейного корреляционного анализа и метода нелинейной регрессии.
Слайд 14Следующий этап развития биометрии связан с именем великого английского статистика
Рональда Фишера (1890—1962). С 1933 по 1943 г. он занимал
должность профессора в Лондонском университете, а с 1943 по 1957 г. заведовал кафедрой генетики в Кембридже. За эти годы ученый разработал теорию выборочных распределений, методы дисперсионного и дискриминантного анализа, теорию планирования экспериментов, метод максимального правдоподобия и многое другое, что составляет основу современной прикладной статистики, в том числе в генетике.
Слайд 15Английский статистик и генетик
Фишер Рональд Эйлмер
(17.02.1890-29.07.1962)
Известен как
основоположник современной прикладной статистики, заложивший и разработавший ее основные идеи.
Слайд 16Развитие статистики и внедрение ее в медицину в России
Слайд 17В XVIII—XIX веках в России сложились благоприятные условия для развития
статистики. В 1804 г. при Академии наук был организован факультет
статистики. Согласно “Уставу учебных заведений, подведомственных университетам” (приходские, уездные училища и гимназии) эти заведения обязаны были иметь кафедру статистики.
Слайд 18В 1806—1808 гг. усилиями русского статистика профессора Санкт-Петербургского университета К.Ф.
Германа был организован “Статистический журнал”. Издается достаточно много учебников по
статистике, в частности учебник К.Ф. Германа “Всеобщая теория статистики для обучающихся сей науке”
Слайд 19В 1863 г. в правительстве России был организован Статистический совет,
который с 1864 по 1875 г. возглавлял П.П. Семенов-Тян-Шанский —
известный географ, статистик, экономист, организатор всеобщей переписи России в 1897 г. Признанием успехов российской статистики стало проведение в 1872 г. в Санкт-Петербурге VIII сессии Международного статистического конгресса, на котором в качестве почетного члена присутствовал А. Кетле.
Слайд 20Активным сторонником использования статистики в медицине был основоположник военно-полевой хирургии
Н. И. Пирогов. Еще в 1849 г., говоря об успехах
отечественной хирургии, он указывал: “... приложение статистики для определения диагностической важности симптомов и достоинства операций можно ... рассматривать как важное приобретение новейшей хирургии”.
В своем учебнике по основам военно-полевой хирургии Н.И. Пирогов пишет: “Я принадлежу к ревностным сторонникам рациональной статистики и верю, что приложение ее к военной хирургии есть несомненный прогресс”.
Слайд 21Известный российский терапевт и организатор земской медицины В.А. Манассеин в
своих клинических лекциях уделял большое внимание медицинской статистике. “Для проверки
в клинике имеются два пути, отнюдь не исключающие друг друга и одинаково важные. Я разумею путь статистического доказательства, с одной стороны, и точное клиническое наблюдение каждого отдельного случая — с другой”.
Слайд 22В этот же период издается немало учебников по статистике. Благодаря
работам А.А. Чупрова и Е.Е. Слуцкого российским читателям стали доступны
достижения представителей школы английских статистиков К. Пирсона и Ф. Гальтона. Во многом этому способствовала книга физиолога и нейрогистолога А.В. Леонтовича “Элементарное пособие к применению методов Гаусса и Пирсона при оценке ошибок в статистике и биологии” (Киев, 1909—1911), которая неоднократно переиздавалась. Это служит ярким свидетельством того, что российские медики и биологи брали на вооружение новые методологические приемы статистики.
Слайд 23Развитие статистики и внедрение ее в медицину в России
Слайд 24В первые послереволюционные десятилетия интерес к применению статистики в научных
исследованиях не уменьшился. Продолжала свою деятельность школа статистиков в Петербургском
университете, где в этот период активно работал известный специалист в области санитарной и медицинской статистики Л.С. Каминский (1899—1962), вся работа которого была направлена на активное внедрение достижений статистики в практику медицинских исследований.
Слайд 25Усилия по превращению статистики в мощный инструмент не только социально-экономических,
но и естественных наук отражены в работах профессора Петербургского университета
А.А. Кауфмана. Например, в книге “Теория и методы статистики” он пишет: “Статистика или статистический метод переплетаются с политической экономией и экономической политикой, с уголовным правом, медицинской гигиеной... Сфера приложения статистического метода не имеет, таким образом, резко очерченных границ...”.
Слайд 26Эту же мысль подчеркивает и А. Боули в своем труде
“Элементы статистики” (М.—Л., Госиздат, 1930): “Статистика не является отделом политической
экономии и не приурочена к какой-нибудь одной науке. Знание статистики подобно знанию иностранных языков или алгебры: оно может пригодиться в любое время и при любых обстоятельствах”.
Слайд 27Не менее интересен и изданный в 1927 г. сборник переводов
статей зарубежных авторов “Математические методы в статистике”. В нем содержится
14 статей, в которых рассматривались вопросы метода выборочного исследования, построения и анализа кривых распределения вероятностей, парной, частной и множественной корреляции, ранговой корреляции, корреляции временных рядов, сглаживания кривых методом наименьших квадратов, применения критерия хи-квадрат и т.д. Даже этот неполный перечень отражает обширные читательские интересы, которые старались удовлетворить составители сборника.
Слайд 28Однако для нас наибольший интерес представляют отражающие дух политизированности общества
того времени “Предисловие” В.А. Базарова и “Введение” С.П. Боброва к
этому изданию. Вот как пишет об этом В.А. Базаров: “Математическая статистика, казалось бы, должна возбуждать к себе особенный интерес в Советской России, плановое хозяйство которой предъявляет к учету текущей экономической действительности такие многообразные и сложные требования, как нигде в мире... Между тем, математическая статистика до сих пор встречает к себе со стороны многих советских экономистов недоверчиво опасливое отношение. В прессе не раз высказывалось мнение, что буржуазный дух английских и американских ученых, создавших современную статистическую методологию, не мог не отразиться на содержании их работ и что поэтому изучение математической статистики может быть рекомендовано советскому юношеству лишь с добавкой специального противоядия...
Слайд 29Начиная с 1925—1926 гг. возрастают усилия власти втянуть в орбиту
политических распрей и ученых. Так, во влиятельном журнале того времени
“Под знаменем марксизма” (ПЗМ) В. Егоршин заявлял: “... современное естествознание также классово, как и философия и искусство... Оно буржуазно в своих теоретических основаниях”, а уже в 1930 г. в редакционной статье журнала “Естествознание и марксизм” прямо утверждалось: “...философия, естественные и математические науки так же партийны, как и науки экономические или исторические”.
Слайд 30Представители российской буржуазной науки, позднее разоблаченные как вредители, использовали статистику
как орудие борьбы против социалистического строительства в СССР. Вредитель Кондратьев
доказывал незыблемость капиталистического строя при помощи анализа статистических кривых и одновременно статистически доказывал "невыгодность" индустриализации СССР.
Слайд 31Базаров в борьбе против принятых темпов социалистического строительства доказывал свою
теорию "незатухающей кривой"; по его мнению, пределом развития советского хозяйства
является довоенный уровень. ...
Широко использовали статистику и контрреволюционные троцкисты и оппортунисты всех мастей. Так, например перед XIV съездом партии "оппозицией" была пущена крылатая фраза о 14% кулаков, которые держат 61% товарного хлеба. .
Слайд 32На «фальсификации» данных экономической статистики основывались и известные клеветнические утверждения
троцкистов и правых и левых оппортунистов о падении реальной заработной
платы, о "деградации" сельского хозяйства, о невыгодности для крестьянства Октябрьской революции и т.д.
Слайд 33т. Сталин в своих работах дает научно обоснованный анализ коренных
методологических проблем, с которыми имеет дело статистика. Проблема случайности и
необходимости, возможности и действительности, вопрос о научно правильном применении средней и другие вопросы, возникающие в обстановке диктатуры пролетариата и борьбы за победу социалистического строительства, — все эти проблемы нашли свое принципиальное решение в работах т. Сталина”. Одна из 12 глав этой книги называется “Буржуазная и вредительская методология в статистике и ее критика”. В этой главе авторы вновь пытаются доказать “вредительский” характер статистической методологии.
Слайд 34Однако, как сказал однажды Сталин, на наше счастье статистики буржуазных
стран привыкли быть честными со своими материалом и исследованиями...
Слайд 35“Тормозом в развитии статистики явилось еще одно обстоятельство. В 30-х
годах широкое распространение получила точка зрения, согласно которой статистика являлась
наукой о стихийных явлениях природы и общества. На этой основе развивалась “теория” отмирания статистики при социализме в связи с тем, что расширение и укрепление планового руководства с развитием народного хозяйства должно свести ее на нет” . Следствием этой теории была “... слишком рьяная борьба за "изгнание" из статистики математики "как математического формализма".
Слайд 36В центре развернувшейся в 1929—1933 гг. острой дискуссии в биологии,
особенно в генетике, была проблема наследования приобретенных признаков и реальности
генов. Приверженцы идеи наследования благоприобретенных под влиянием упражнений и среды обитания изменений — ламаркисты, сосредоточились в Биологическом институте им. К.А. Тимирязева, а их противники — биологи и генетики классического направления, объединились вокруг секции естествознания Коммунистической Академии. В 1931—1932 гг. генетики были причислены к так называемому меньшевиствующему идеализму — течению, которое раскритиковал и назвал этим термином И.В. Сталин.
Слайд 37На начальном этапе дискуссии в биологии Т.Д. Лысенко не принимал
участия, но на проходившем в Москве (февраль 1935 г.) совещании
ударников сельского хозяйства выступил со следующими словами: “...сейчас многие колхозники дают селекции и генетике больше, чем иные профессора, закончившие институты”. Выступление понравилось присутствующему на совещании Сталину, который стал аплодировать: “Браво, товарищ Лысенко, браво!”, а 15 февраля 1935 г. в “Правде” было напечатано подробное изложение речи и приведены слова Сталина. С этого выступления и начался взлет “народного академика” Т.Д. Лысенко.
Слайд 38Цитаты из статьи Э. Кольмана “На текущие темы”: “Как в
философии и политэкономии, так и в физике, в химии, в
математике, в медицине мы не будем верить ни в едином слове, раз речь заходит о философии, профессорам, дающим самые ценные работы в области фактических специальных исследований, … не будем верить потому, что все эти науки — физика, химия, математика, медицина — не суть "чистые" науки в современном классовом обществе, а партийные науки, как философия и политэконо мия. Правда, здесь следует отметить, что партийность науки проявляется иначе в науках о природе, чем в общественных науках, однако нет ни одной науки, стоящей якобы "вне классовой борьбы"”.
Слайд 39После августовской 1948 г. сессией ВАСХНИЛ гонению подверглась не только
генетика, но и непосредственно статистика, что было вполне логично, поскольку
она была одним из основных инструментов генетики. Нападки на статистику сразу же дали ожидаемый результат. Биологи и медики поняли, что использовать статистику опасно, так как могут причислить к менделистам-морганистам и обвинить в преклонении перед иностранщиной и космополитизме.
Слайд 40Листая основные биомедицинские журналы тех лет, мы не найдем даже
малейших признаков применения статистики для анализа результатов наблюдений: биология и
медицина продолжали оставаться описательными науками.
На протяжении этого периода проводилась мысль о том, что доминирующую роль в статистике играет не закон больших чисел, а марксистско-ленинская философия.
Слайд 41После смерти Сталина возросли усилия ученых по прекращению монополии Лысенко
в биологии. В печати стали появляться отдельные статьи с критикой
“лысенковщины”, но наибольшего подъема эта критика достигла в 1955 г. — в год 100-летия И.Ф. Мичурина. Весомый вклад в дело разоблачения Лысенко внес известный биолог и пропагандист биометрии А.А. Любищев, который 30 июля 1955 г. закончил статью “Об аракчеевском режиме в биологии”.
Слайд 42Осенью того же года по инициативе известного генетика В.Я. Александрова
было написано письмо в Президиум ЦК КПСС, в котором раскрывалась
отрицательная роль Лысенко в биологии. Письмо подписали более 250 известных ученых, в том числе И.Е. Тамм, Л.Д. Ландау, П.Л. Капица, А.Д. Сахаров, Я.Б. Зельдович, И.Б. Харитон и др. В результате всех этих действий в 1955 г. Лысенко был освобожден от обязанностей Президента ВАСХНИЛ.
Слайд 43В 60-е годы после очевидных успехов прикладной статистики в технике
и точных науках вновь начал расти интерес к использованию статистики
в биологии и медицине. В журналах “Вопросы философии” и “Вестник высшей школы” периодически стали появляться статьи на эту тему. Так, В.В. Алпатов в статье “О роли математики в медицине” писал: “Чрезвычайно важна математическая оценка терапевтических воздействий на человека. Новые лечебные мероприятия имеют право заменить собою мероприятия, уже вошедшие в практику, лишь после обоснованных статистических испытаний сравнительного характера. ...
Слайд 44Заметным явлением тех лет стала книга профессора Института организации здравоохранения
и истории медицины им. Н.А. Семашко АМН СССР А.Я. Боярского
“Статистические методы в экспериментальных медицинских исследованиях”. Автор детально проанализировал большое количество статей, опубликованных в течение нескольких лет в известных медицинских журналах. Это было первое отечественное исследование, в котором автор на большом конкретном материале показал неблагополучную ситуацию с применением статистики в экспериментальной медицине и биологии тех лет.
Слайд 45В Ленинградском университете стали периодически проводиться совещания по применению математических
методов в биологии, в организации и проведении которых большую роль
сыграли такие известные ученые, как П.В. Терентьев, Л.С. Каминский, Н.А. Плохинский, В.Ю. Урбах, А.А. Любищев, П.Ф. Рокицкий, Л.Е. Поляков и др.
Слайд 46Выступавшие констатировали недостаточное применение биометрии в медицине и биологии, необходимость
расширения подготовки медиков в этом направлении и усиления контроля за
уровнем статистической грамотности публикаций.
Слайд 47Вот как прозвучало это в докладе профессора Военно-медицинской академии (Ленинград)
Л.Е. Полякова: “Следует считать целесообразным возбудить ходатайство перед соответствующими организациями
о включении в учебные планы и программы подготовки и усовершенствования врачей и научных работников в области медицины (аспирантура, клиническая ординатура) специального курса по математической статистике. Необходимо также поставить и решить вопрос о более строгом контроле поступающих для издания материалов и специальном их рецензировании с точки зрения математико-статистической грамотности и культуры”.
Слайд 48Статистика – наука, изучающая количественные закономерности материальных
явлений в неразрывной связи
с их качественной стороной.
Слайд 49Статистика:
• это инструмент для анализа экспериментальных данных и результатов
популяционных исследований;
•
это язык, с помощью которого исследователь сообщает полученные им
результаты и
благодаря которому он понимает медико-статистическую
информацию;
• это элемент доказательной медицины;
• это база для обоснования принятия управленческих решений.
Слайд 50Медицинская статистика - раздел статистики, изучающий состояние здоровья населения и
общественное здравоохранение
Слайд 53Математическая статистика – раздел математики посвященный методам систематизации, обработки, анализа
и использования статистических данных для научных и практических выводов.
Изучает
явления, оценка которых может производиться только на массе наблюдений.
Слайд 54Основные понятия теории вероятности.
Вероятность – количественная мера объективной возможности
появления события при реализации определенного комплекса условий.
Вероятность события А обозначается
как р(А) и выражается в долях единицы или в процентах.
Мера вероятности – диапазон ее числовых значений: от 0 до 1 или от 0 до 100%.
Случайное событие – событие, которое при реализации определенного комплекса условий может произойти или не произойти. Его вероятность будет находиться в пределах 0< p(A) < 1 или 0< p(A) < 100%.
Слайд 55Основные понятия теории вероятности.
Достоверное событие - событие, которое при реализации
определенного комплекса условий произойдет непременно. Его вероятность будет равна 1
или 100%.
Невозможное событие - событие, которое при реализации определенного комплекса условий не произойдет никогда. Его вероятность будет равна 0.
В медицинских исследованиях достаточной считается вероятность появления события не менее 0,95 или 95%. При изучении заболеваний или ситуаций, имеющих важнейшие медико-социальные последствия или высокие показатели летальности и инвалидности, а также при фармакологических исследованиях вероятность появления события должна быть не менее 0,99 (99%).
Слайд 56Основные понятия теории вероятности.
Частота появления события (статистическая вероятность) – это
отношение числа случаев, в которых реализовался определенный комплекс условий (m),
к общему числу случаев (n): p(A)=m/n. Вероятность отсутствия события: q= 1- p.
Случайная величина – величина, которая при реализации определенного комплекса условий может принимать различные значения.
Закон больших чисел: при достаточно большом числе наблюдений случайные отклонения взаимно погашаются и проявляется устойчивость некоторых параметров, которая выражается в основной тенденции (закономерности). При этом наблюдаемая частота случайного события будет сколь угодно мало отличаться от вероятности появления события в отдельном опыте.
Слайд 57Этапы статистического исследования:
I. Формирование цели и задач исследования.
II. Организация исследования.
III.
Сбор информации.
IV. Обработка информации.
V. Анализ результатов исследования.
VI. Внедрение результатов исследования
в практику и оценка эффективности внедрения.
Слайд 58Формирование цели и задач исследования
Цель - отвечает на вопрос зачем
проводится данное исследование.
Задачи исследования - дают ответ на вопрос как
будет достигнута цель.
Слайд 61Организация исследования:
План исследования предусматривает методику проведения исследования, дает раскладку организационных
вопросов (что, где, когда, сколько?).
Определяет субъектов исследования.
Слайд 62Организация исследования:
Программа исследования(отвечает на вопрос как делать) состоит из трех
главных компонентов :
программы сбора материала;
программы его разработки (табличной
сводки);
программы анализа.
Прежде всего устанавливается объект исследования и единица наблюдения.
Слайд 63Организация исследования:
Под объектом наблюдения понимают статистическую совокупность, состоящую из отдельных
предметов или явлений - единиц наблюдений, взятых в определённых границах
времени и пространства.
Единица наблюдения - первичный элемент статистической совокупности, являющейся носителем признаков, подлежащих регистрации, изучению в ходе исследования.
Учетные признаки – признаки подлежащие регистрации в ходе статистического исследования.
Слайд 71V этап: Анализ результатов исследования.
1. Методы расчета обобщающих коэффициентов, характеризующие
различные стороны каждого из признаков программы:
методы расчета относительных величин;
методы расчета средних величин;
методы оценки достоверности относительных и средних величин.
Слайд 72Относительные величины. Статистические коэффициенты.
Слайд 73Абсолютные величины – могут быть простыми (имеют именованные единицы измерения
сантиметры, дни, случаи заболевания и т. п.) и сложными (выражаются
произведениями единиц различной размерности человеко-часы, потерянные годы жизни и т. п.).
Слайд 74Относительные величины (статистические коэффициенты)
широко используются в официальной статистике для
оценки медико-демографической и санитарно-эпидемиологической ситуации, оценки деятельности медицинских учреждений и
т. п.
Слайд 75Относительной статистической величиной - называется отношение двух чисел, выражающих меру
каких-либо явлений. Смысл получения относительных величин – нахождение общей меры,
приведение к общему знаменателю.
Слайд 76Динамика обеспеченности населения врачами.
Слайд 77Интенсивные коэффициенты показывают размер явления (частоту, уровень, распространенность) явления в
среде которая продуцирует его. Эти коэффициенты отвечают на вопрос, как
часто явление встречается в известной среде.
Слайд 78Экстенсивные коэффициенты отражают структуру, распределение. Они характеризуют отношение части статистической
совокупности к целой совокупности (долю, удельный вес, часть от целого),
то есть отношение отдельного элемента к итогу. Выражаются только в процентах к итогу.
Слайд 79Структура смертности в городской и сельской местности в 2004 г.
(все население)
Слайд 80Структура смертности в городской и сельской местности в 2004 г.
(население трудоспособного возраста)
Слайд 81Летальность при раневых осложнениях.
Слайд 82Летальность при раневых осложнениях.
Слайд 83Коэффициенты соотношения – применяются, когда приходится оценивать соотношение разнородных величин.
Данные коэффициенты вычисляются через пропорцию. Могут вычисляться на 100, на
1000, на 10000. Могут выражаться дробными числами: 1, 53 медсестры на врача.
Слайд 84
Кривая нормального распределения
Нормальное (гауссово, симметричное, колоколообразное) распределение – описывает совместное
воздействие на изучаемое явление небольшого числа случайно сочетающихся факторов (по
сравнению с общей суммой факторов), число которых неограничено велико. Встречается в природе наиболее часто, за что и получило название «нормального».Характеризует распределение непрерывных случайных величин.
Р
Х
х – значения случайной величины;
р – вероятность появления данного значения в совокупности.
Слайд 85Мода (Мо) (mode)- наиболее часто встречающаяся в вариационном ряду варианта.
Мода
используется:
- при малом числе наблюдений, когда велико влияние состава совокупности
на среднюю ;
- для характеристики центральной тенденции при ассиметричных распределениях, когда велико влияние на среднюю крайних вариант;
Слайд 86Медиана (Me)(median) -варианта, которая делит вариационный ряд на две равные
части.
Медиана используется:
- при необходимости знать, какая часть вариант лежит выше
и ниже срединного значения ;
- для характеристики центральной тенденции при ассиметричных распределениях .
Слайд 87Основные параметры непрерывных вариационных рядов
Количество значений (N)
Минимум и максимум
Средняя арифметическая
(М)
Ошибка средней арифметической (м)
Среднее квадратическое отклонение (σ)
Параметры распределения
Асимметрия и эксцесс
Нормальность
Медиана
и центили
Слайд 88
Основные характеристики нормального распределения
Среднее арифметическое значение (М)
Стандартное (среднеквадратическое) отклонение (σ)
Количество
наблюдение (n)
Слайд 89
68.3 % всех вариант отклоняются от своей средней не более,
чем на σ 95.4% вариант находятся в пределах X ±
2σ
99.7% вариант находятся в пределах X ± 3σ. Отклонение параметра от его средней арифметической в пределах σ расценивается как норма, субнормальным считается отклонение в пределах ± 2σ и патологическим - сверх этого предела, т.е. > ± 2σ" (рис. )
Правило «трех сигм» ( SD – стандартное отклонение)
Слайд 90V этап: Анализ результатов исследования.
2. Методы сравнения различных статистических совокупностей:
методы оценки достоверности различия обобщающих коэффициентов;
методы оценки достоверности различия
распределения признаков;
методы стандартизации обобщающих коэффициентов.
Слайд 91
Влияние диеты на
величину сердечного выброса
Слайд 92Общий принцип использования
методов оценки статистической значимости межгрупповых различий
Формулировка
нулевой гипотезы о случайности обнаруженных различий.
Определение вероятности получить наблюдаемые различия
при условии справедливости нулевой гипотезы.
Подтверждение или отвержение нулевой гипотезы на основании сравнения вероятности, полученной в п.2 с требуемым значением уровня значимости.
Слайд 93
Формирование
Выборок:
Контроль
Макароны
Мясо
Фрукты
Слайд 94
Сравнение двух различных выборок
Слайд 95Две оценки дисперсии
Внутригрупповая дисперсия - среднее значение дисперсии, из дисперсий
имеющихся выборок.
Межгрупповая дисперсия (дисперсия совокупности) - дисперсия результирующей выборки состоящей
из средних арифметических первичных выборок
Слайд 96
Две оценки дисперсии
F = 1, при отсутствии различий в выборках.
Слайд 97
Критическое значение F
Vмеж = число групп - 1; Vвну =
(численность группы1 -1)* (численность группы2 -1) …
Слайд 98Пример применения
дисперсионного анализа
Позволяет ли «правильное» лечение острого пиелонефрита сократить
срок госпитализации?
Группа А
лечение, согласно «Настольного справочника врача»
n=36
СДГ=4,51 сут.
σ=1,98 сут.
Группа Б
лечение,
согласно
другим методикам
n=36
СДГ=6,28 сут.
σ=2,54 сут.
Можно ли считать эти различия случайными?
Слайд 100Оценка коэффициента F
Vмеж = 2 – 1= 1; Vвну
= 36-1 + 36-1 = 70
Слайд 102Сравнительная статистика
Для оценки достоверности относительных величин (Р), также как и
для средних, необходимо рассчитывать их ошибку (mр). Расчет средней ошибки
относительной величины производится по формуле:
где Р - значение относительной величины, q - разница между базовым коэф-фициентом относительной величины и ее значением (100 — Р; 1000 — Р; 10 000 — Р и т. д.), n - число наблюдений (при количестве наблюдений менее 30 в знаменатель берется выражение n — 1).
Слайд 103Сравнительная статистика
Доверительный критерий (или критерия точности) t.
для относительных
величин для
средних
где М1 (P1) - размер первой сравниваемой величины, М2 (P2) - размер второй сравниваемой величины, m1 - ошибка первой величины, m2 ошибка второй величины.
О наличии или отсутствии достоверных различий между сравниваемыми величинами судят по размеру получаемого критерия t. Если критерий t равен 2, различие достоверно и это можно утверждать с вероятностью безошибочного прогноза, равной 95 % (при t = 3 и более - с вероятностью безошибочного прогноза - 99 %). Величина критерия менее 2 свидетельствует о недостоверном различии сравниваемых показателей.
Слайд 105финансирование по подушевому принципу
на одного прикрепившегося с учетом половозрастной
структуры и других параметров, влияющих на потребление медицинской помощи
Слайд 106Взаимосвязь возрастной структуры и потребности в медицинской помощи
возраст
Потребность в услугах
здравоохранения
20 лет
Слайд 107финансирование по подушевому принципу на одного прикрепившегося с учетом половозрастной
структуры
продолжение:
Кпз =Кпз1 х Чз1+Кпз2 х Чз2+КпзХ х ЧзХ
Чпн
где:
-КпзХ - коэффициент половозрастных затрат, характеризующих ожидаемые затраты в рамках территориальной ОМС.
-ЧзХ- численность прикрепленных граждан в данной половозрастной группе.
-Чпн - общая численность прикрепленного населения.
Слайд 108финансирование по подушевому принципу на одного прикрепившегося с учетом половозрастной
структуры
продолжение:
Кдф = Кпз : Кпк
где:
Кпк - коэффициент потребности населения
края в мед. помощь;
Кпз - коэффициент потребности в мед. помощи прикрепленного населения.
Слайд 109финансирование по подушевому принципу на одного прикрепившегося с учетом половозрастной
структуры
продолжение:
Нсдф = Нср.д х Кдф
где:
Нср.д - среднедушевой норматив
финансирования краевой программы;
Кдф - коэффициент дифференциации среднедушевого норматива.
Слайд 110финансирование по подушевому принципу на одного прикрепившегося с учетом половозрастной
структуры
рассчитывается по формуле:
Фсз = Нсдф х Чпн
где:
Фсз - объем
финансирования субъекта здравоохранения на определенный период времени;
Нсдф среднедушевой норматив финансирования для данного субъекта здравоохранения;
Чпн - численность прикрепленного населения.
Слайд 111Распределение расходов в процессе стационарного лечения
Слайд 114V этап: Анализ результатов исследования.
3. Методы дифференциации, оценки взаимодействия и
интеграции факторов.
Эти методы позволяют решить следующие задачи:
а) разложить многофакторный
комплекс на составные факторы, выделяя важные и незначительные;
б) изучить взаимодействие факторов
в) получить интегрированную оценку на основе комплекса факторов.
Слайд 115V этап: Анализ результатов исследования.
4. Методы анализа динамики явлений (анализ
динамических или временных рядов).
Слайд 117Абсолютный прирост (убыль) – характеризует изменение явления в единицу времени.
Слайд 118Темп роста – показывает соотношение в процентах последующего и предыдущего
уровней.
Слайд 119Темп прироста – показывает на сколько процентов увеличился или уменьшился
уровень явления.
Слайд 120Абсолютное значение 1% прироста – характеризует значение 1% прироста изучаемого
явления.
Слайд 121Коэффициент наглядности – используются для облегчения сравнения и повышения наглядности.
Не изменяя по существу отношения между числами, они дают более
отчетливое представление о характере изменения явления во времени. Выражаются коэффициенты наглядности в процентах или долях единицы, которые вычисляют от исходного уровня, принимаемого за 100%.
Слайд 122Сравнение первичной заболеваемости взрослого населения Красноярского края в 2001 г.
и 2005 г. (уровень 2001 г. принят за 1,0)
В 2005
г., по сравнению с 2001 г., наблюдается снижение первичной заболеваемости взрослых по 14 классам заболеваний.
Слайд 123VI этап: Внедрение результатов исследования в практику.
Научные исследования заканчиваются внедрением
их результатов в практику. В зависимости от цели и задач
исследования возможны различные варианты практического использования результатов работы:
доклад или лекция, практическое занятие для обучения и повышения квалификации;
опубликование в печати (статья, монография, обзор и т.п.);
методический материал (рекомендации, инструкция, положение);
директивный материал (приказ, положение, закон и.др.);
реорганизация деятельности медицинского учреждения;
научное открытие, рационализаторское предложение и т.п.
Слайд 124Основные виды ошибок научного исследования
1. Ошибки регистрации:
Случайные (взаимно погашаются и
не влияют на результат исследования);
Систематические (плохая юстировка прибора, неоднозначность инструкции,
недостаточная унификация методов и т.д. – могут существенно исказить результат исследования).
Слайд 125Основные виды ошибок научного исследования
2. Методические
Недостаточность числа наблюдений;
Нарушение случайности отбора;
Неправильная
группировка данных;
Использование средних величин в неоднородных группах и другие.
Слайд 126Основные виды ошибок научного исследования
3. Логические
Сравнение данных без учета их
качественной характеристики;
Смешение причины и следствия;
Недоучет взаимосвязи явлений.
Слайд 127Динамика заболеваемости взрослого населения Красноярского края в 1995-2005 гг. (на
1000 жителей)
При стабилизации уровня общей заболеваемости взрослых, обращает на себя
внимание увеличение разрыва между уровнями общей и первичной заболеваемости, что свидетельствует о накоплении хронической патологии в популяции взрослого населения.
Слайд 128Сравнение общей заболеваемости взрослого населения Красноярского края в 2001 г.
и 2005 г. (уровень 2001 г. принят за 1,0)
В 2005
г., по сравнению с 2001 г., наблюдается снижение общей заболеваемости взрослых по 14 классам заболеваний.
Слайд 129Финансирование медицинской помощи
по Программе государственных гарантий
в 1999-2005 гг. (млн.руб.)
Бюджет
ОМС
4022,7
6222,9
4897,2
6875,1
8335,0
12450,4
10559,9
Слайд 130Число пролеченных в круглосуточных стационарах
и стационарах дневного пребывания
в Красноярском
крае в 2002-2005 гг.
Слайд 131Структура первичной заболеваемости взрослых
в Красноярском крае в 2005 г.
(0/0)
Среди впервые выявленных заболеваний у взрослых в 2005 г. лидируют
болезни органов дыхания, а так же травмы и отравления.
Слайд 132Структура первичной заболеваемости взрослых
в Красноярском крае в 2005 г.
(0/0)
Среди впервые выявленных заболеваний у взрослых в 2005 г. лидируют
болезни органов дыхания, а так же травмы и отравления.
Слайд 133Исполнение программы государственных гарантий обеспечения граждан Красноярского края бесплатной медицинской
помощью
в 2005 году (%).
Значительное снижение подушевого норматива допущено
в г. Боготоле, Норильске, Ачинске, Лесосибирске, Красноярске, районах – Абанском, Дзержинском, Иланском, Нижне-Ингашском, Северо-Енисейском, Краснотуранском.
Слайд 134Кумулятивное число зарегистрированных случаев ВИЧ-инфекции в Красноярском крае в 1989-2005
г.г.
По уровню пораженности Красноярский край относится к субъектам Российской Федерации
с высоким уровнем развития эпидемии (от 151 до 300 ВИЧ-инфицированных на 100 тыс. населения) и находится на четвертом месте среди регионов Сибирского федерального округа после Иркутской (805,8), Кемеровской (269,8) областей и Республики Бурятия (244,60).
Слайд 135Рождаемость и смертность населения Красноярского края
в 1990-2005 гг. (0/00)
Смертность
Рождаемость
Соотношение
числа родившихся к числу умерших в 2005 году составило 1
: 1,45 (по РФ в 2004 г. – 1 : 1,37).
Слайд 137 КОКРАНОВСКОЕ СОТРУДНИЧЕСТВО
“Отыскивать и обобщать самую достоверную
информацию о
результатах лечебных вмешательств”
http://cochrane.ru/
Слайд 138В своей программной книге, опубликованной в 1972 году, британский эпидемиолог
Арчи Кокран обратил внимание, что общество пребывает в неведении относительно
истинной эффективности лечебных вмешательств. Принятие решений на основе достоверной информации невозможно из-за недоступности обобщенных данных об эффективности лечебных вмешательств. В 1979 году А. Кокран писал: “Очень стыдно, что медики до сих пор не создали системы аналитического обобщения всех актуальных рандомизированных клинических испытаний (РКИ) по всем дисциплинам и специальностям с периодическим обновлением обзоров”.
Слайд 139 В эмблеме Кокрановского Сотрудничества символически представлен систематический обзор семи рандомизированных
клинических испытаний, в которых сравнивали определенное медицинское вмешательство и плацебо.
Каждая горизонтальная линия отражает результаты одного испытания (чем короче линия, тем они достовернее), а ромб представляет суммарный результат анализа всех испытаний. Вертикальная линия, делящая круг пополам соответствует одинаковому эффекту исследуемых методов. Если горизонтальная линия пересекается с вертикалью, значит, в данном исследовании не было выявлено превосходства одного метода над другим. Расположение ромба в левой половине круга означает преимущество экспериментального метода. Если бы последний уступал контрольному методу, большинство горизонтальных линий и ромб лежали бы в правой половине круга.
Слайд 140Эта диаграмма иллюстрирует результаты систематического обзора нескольких рандомизированных клинических испытаний
короткого и недорогого курса кортикостероидов при угрозе прерывания беременности. Отчет
о первом из этих испытаний был опубликован в 1972 году. Если бы через десять лет после этого был проведен систематический обзор всех рандомизированных клинических испытаний, стало бы ясно (это видно на диаграмме), что данное вмешательство позволяет значительно снизить риск смерти недоношенных детей. К 1991 году было опубликовано еще семь аналогичных испытаний, только прибавивших уверенность в результате. Вышеназванное лечение снижает шансы смерти новорожденных детей на 30—50%.
Слайд 141Систематический обзор этих испытаний появился только в 1989 году; а
до этого времени большинство акушеров не представляли себе, насколько эффективны
кортикостероиды для профилактики осложнений преждевременных родов. В результате этого десятки тысяч недоношенных детей могли умереть, были потрачены колоссальные средства на дорогостоящие и неэффективные методы лечения. И это — лишь один из множества примеров той цены, которую мы платим за отсутствие регулярно обновляемых систематических обзоров испытаний медицинских вмешательств.
Слайд 142Когда в октябре 1992 года открывали первый Кокрановский центр в
Оксфорде, была высказана надежда, что начинание Кокрана найдет широкий отклик
у медицинской общественности всего мира. Спустя 6 месяцев эта идея была подробно разработана на собрании, организованном Нью-йоркской Академией Наук. В октябре 1993 года на первом из ставших ежегодными Кокрановском Коллоквиуме 73 представителя из 9 стран стали соучредителями Кокрановского Сотрудничества.
Слайд 143Кокрановское Сотрудничество – международная организация исследователей, поставивших своей целью отыскивать
и обобщать результаты всех когда-либо проведенных рандомизированных клинических испытаний лечебных
вмешательств.
Цель систематического обзора – способствовать принятию медицинских решений на основе самых достоверных фактов.
Слайд 144Основной продукт деятельности Кокрановского сотрудничества - электронная база данных, называемая
Кокрановской библиотекой.
Строго доказанные научные факты необходимы для оказания квалифицированной медицинской
помощи, однако найти и обобщить такие факты нелегко. БИБЛИОТЕКА КОКРАНОВСКОГО СОТРУДНИЧЕСТВА – лучший источник для получения научного обоснования эффективности лечебных вмешательств.
Слайд 145Список литературы:
1. Гланц С. Медико-биологическая статистика.-М.: Практика, 1999
2. Рунион Р.
Справочник по непараметрической статистике.- М.: Финансы и статистика,
1982
3. Флетчер Р.,
Флетчер С., Вагнер Э. Клиническая эпидемиология. Основы доказательной
медицины.- М.: Медиа Сфера, 1998
4. Реброва О. Статистический анализ медицинских данных.-М.: Медиа Сфера, 2002.
5. Сергиенко В.И., Бондарева И.Б. Математическая статистика в клинических
исследованиях. – Гэотар Медицина, Москва, 2000, 256 с.
6. Платонов А.Е. Статистический анализ в медицине и биологии. – Издательство РАМН,
Москва, 2000, 51 с.
8. Making Sense Of Data. J.H. Abramson. Second edition. OUP, 1994.
9. An Introduction to Medical Biostatistics. Martin Bland. Third edition. Oxford Medical
Publications, 2000, 405 p.
10. Statistics. David Freedman. W.W. Norton & Company. Third edition, 1998, 850 p.